• 精选
  • 会员

归纳的概率(三)

2020年6月18日  来源:如何形成清晰的观点 作者:(美)查尔斯·S.皮尔士 提供人:yanjia82......

所有的推理可分为两种:①解释性推理,也叫演绎法或分析法;②扩充性推理,也叫综合法或归纳法(不很确切)。在解释性推理中,首先在前提中规定了某些事实。这些事实在每一种情况下都涵盖无尽的内容,但它们常常可以通过一些规律性的方式总结在一个简单的命题中。因此,在命题“苏格拉底是一个人”中,意味着(没有其他可能性)他一生中的每时每刻(或者你可以说,在他一生中的大部分时间)是一个人。他不可能有一瞬间是一棵树或一只狗;他没有流入水中,或一次出现在两个地方;你不可能像透过一张光学图像一样,把你的手指透过他的身体等。现在,我们有了一些事实,虽然我们得出这些规定时并没有把它整理成命题的目的,但是我们或许就能在其中发现某种规定;这样我们就可以将其部分或全部形成一个新的命题。如果不提出命题,它便可能被忽略。而这一命题就是分析性推理的结论。这些都属于数学论证方法。但综合性推理与之截然不同。在这种推理情况下,结论中总结出的事实并没有在前提中阐述出来。得出的事实也各不相同,比如人们若有m次看到了潮汐上涨,就会得出结论,下一次潮汐会上涨。这些是增加我们常识的唯一推论,当然其他的推论也可能有用。

在任何可能的问题中,我们给出了某些事件出现的相对频率,我们认为在这些事实中,就隐藏着另一个事件出现的相对频率。解法前面已经讲过了。因此,这只是解释性推理,而非综合性推理。综合性推理的结论是要超出给定前提的范围的。因此,要想通过这种方法来发现综合性推理中的概率是缘木求鱼。

大多数关于概率的论文都含有一个不同寻常的原则。例如,如果一个居住在地中海沿岸、从未听说过潮汐的原始人来到了比斯开湾,看到潮汐上涨m次,他就可以知道潮汐上涨的概率等于:

凯特勒在他的一本著作中强调了这一点,并将其作为归纳推理理论的基础。

但是,如果这个人从未见过潮汐,也就是说,给定m=0,此解决方案就不再成立。这样,下一次潮汐上涨的可能性就是。换句话说,解决方案涉及概念论的原则,即完全未知的事件的概率为一半对一半。其中包含的道理还可以由下面这个例子得出,即好几个缸里装着相同数量的球,部分为白色,部分为黑色。一个缸里都是白球;一个缸里有一个黑球,其余为白球;另一个缸里都是黑球,其余为白球;以此类推,黑球比例依次增加,直到缸里全是黑球。但是,在这种人为安排和自然概率之间进行类比唯一可能的原因是,我们所不知道的替代方案必须被认为是有同等可能性的。但这个原则是荒谬的。按照这个原则,列举不同可能性有无限多种方式,都会产生不同的结果。如果有方法列举可能性,并使它们都相等,那也绝不是用这种方法,而是如下方案:假设我们有一个巨大的仓库,黑球和白球混在一起;并且假设每个缸内的球数都是固定的,是从仓库里随机取出来的。仓库中白球的相对数量可以是任何值,比如。那么,第一个球是白色的缸就占,第一个球是黑色的缸占。在取出第一个球是白色的缸里,第二个球是白色的占;在第一个球是黑色的缸里,第二个球是白色的也占。于是,我们就可以得到一个分布表,w代表白色球,b代表黑色球。读者可以自行检验。

wwww

wwwb  wwbw  wbww  bwww

wwwb  wwbw  wbww  bwww

wwbb  wbwb  bwwb  wbbw  bwbw  bbww

wwbb  wbwb  bwwb  wbbw  bwbw  bbww

wwbb  wbwb  bwwb  wbbw  bwbw  bbww

wwbb  wbwb  bwwb  wbbw  bwbw  bbww

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

wbbb  bwbb  bbwb  bbbw

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

第二组只有一个b,只有2行相同,第三组有4行相同,第四组有8行相同,第五组有16行相同,每次翻1倍。这是因为我们认为仓库中的黑球是白球的2倍。若我们假设是以10倍递增,就不是1、2、4、8、16,而是1、10、100、1000、10000。

另一种情况是,如果仓库中的黑白球数量相等,那么每组就会只有一行。现在假设从其中一个缸中抽出两个球,并且发现都是白球,下一个是白球的概率是多少?如果被抽出的两个是开始投入缸中的两个,那么下一个取出的是第三个投入的球,则无论前两个球是什么颜色,第三个是白球的概率相同。因为我们认为,只有相同比例的缸在前两个为白色白色、白色黑色、黑色白色和黑色黑色之后,第三个球才是白色。因此,在这种情况下,第三个球是白色的机会与前两个相同。但是,通过观察第84页上的分布表,读者可以看到,在每组中取出球和放入球的频率相同,因此抓球结果与放入顺序无关。因此,已经取出的球的颜色对其他球是白色或黑色的概率都没有影响。

现在,如果有方法来列举自然情况下的可能性,并使得每种可能性相同,那么显然应该使每组自然的元素排列或组合(也就是我们所假设的分布方式)的可能性相同,因此,似乎可以假设任何这样的分布都是可能的,而这种假设只能得出一个结论,即从过去推断未来,经验绝对是毫无价值的。事实上,在你认为我们完全忽视的机会占到一半时,关于潮汐的问题在概率上与抛硬币的问题没有任何差别,一枚硬币(已知正反两面的可能性均等)成功正面朝上也可以有m次。简而言之,假设自然完全是杂乱无章的,或是独立因素的随机组合,那么就无法从一个事实推论出另一个事实;而且,正如我们后面会看到的那样,没有推理就不能从纯粹的观察中得出判断,这不啻假设人类的所有知识都是错误的,真知是不可能的。假设我们过去或多或少发现自然是有一定秩序的,这纯粹只是运气,而现在我们的运气已经用完了。现在,我们可能没有相反的证据,但是,若认为大部分问题都解决了、没有人会怀疑或能够质疑、对此否定的人会认为自己很愚蠢,那么推理也就毫无必要了。

我们有权谈论自然排列的各种相对概率,比如宇宙的数量是否和黑莓一样多;我们是否能把各个宇宙放到一个袋子里,充分摇匀,取出一个样本,检验每种排列的可能性分别是多少。但是,即使在这种情况下,我们还会被一个更广阔的宇宙包含在内,对于它来说,概率便没有用武之地了。

归纳 / 概率

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000