• 精选
  • 会员

神奇的价值函数曲线图

2020年7月17日  来源:错误的行为——行为经济学的形成 作者:[美]理查德·泰勒 提供人:yandang18......

神奇的价值函数曲线图

卡尼曼和特沃斯基的论文中还有一点深深地吸引了我,那就是描述价值函数的一幅图。这是经济学思想中一个重要的概念转变,也是他们新理论的真正引擎。自伯努利之后,经济模型一直基于一种简单的假设,即人们的行为符合财富的边际效用递减规律,如前文中的图2所示。

这个财富效用模型符合基本的财富心理学,但为了创建一个更好的描述性模型,卡尼曼和特沃斯基意识到,应该将注意力放在财富的变化而非财富的等级上。这听起来似乎只是一个微小的变化,实际上却是一个重大转变。他们设计的价值函数曲线如图3所示。

卡尼曼和特沃斯基之所以将重点放在变化上,是因为人类本身就是通过变化来体验生活的。假设你所在的办公大楼的空气循环系统非常好,可以使办公环境始终保持我们所说的常温。现在,你离开办公室去会议室参加会议,你会对那里的温度有何反应呢?如果那里的温度与你的办公室及走廊里的温度相同,你不会有什么反应。只有当会议室的温度明显比办公楼其他地方高或低的时候,你才会注意到。但当我们适应新的环境后,就不会在意温度了。

图3 价值函数曲线

在对待金融方面的事情时人们的表现亦是如此。假设简的年薪为8万美元,如果年终时意外得到了5 000美元的奖金,她会有什么反应呢?她会将这笔钱与她毕生可得的财富做对比吗?5 000美元似乎显得微不足道。但她不会这样做对比,而是会想:“哇,多了5 000美元!”人们会通过财富的变化而非等级去感知生活,变化可能是与现状不同的变化,或是与预期不同的变化,但不管是哪种形式,让我们欢喜或痛苦的都是变化。这的确是一种高见卓识。

那篇论文中的图极大地激发了我的想象力,于是我在黑板上列出的行为清单旁边画了一条效用曲线,并且发现这条S型曲线蕴含了大量有关人类本性的智慧。曲线的上半部分代表获益,与一般的财富效用函数曲线相同,体现了敏感性递减的规律。不过,请注意,损失部分也符合敏感性递减的规律。损失10美元和20美元间的差别要大于损失1 300美元和1 310美元间的差别,这就是卡尼曼和特沃斯基的曲线图与标准经济学模型的不同之处。从某一财富水平开始,随着财富效用的减少,损失在不断增加,令人越来越心痛。(如果随着财富的增加,你越来越不看重获益,那么随着财富的减少,你会越来越看重损失。)

我们对现状改变的敏感性会呈现出递减规律,这是另一个基本的人类特征,即“韦伯–费希纳定律”(Weber-Fechner Law),它是心理学领域最早的发现之一。韦伯–费希纳定律指出,对任何变量而言,刚刚可以感觉到的差别与变量的级别是成比例的。如果我的体重增加了1盎司(约28.35克),我可能不会察觉,但是如果我在买新鲜的香草,2盎司和3盎司的差别则是显而易见的。心理学家将刚刚可以感觉到的差别称为“最小可觉差”(JND)。如果你想给一位研究型心理学家留下深刻的印象,就在鸡尾酒会的闲谈中用上这个词吧。(“我给新买的车安装了更贵的音响系统,因为价格的差异小于最小可觉差。”)

你可以用下面这个例子检验你是否明白了韦伯–费希纳定律中的这个概念。这个例子出自美国国家公共广播电台一直都在播出的节目《谈论汽车》(Car Talk)。该节目由一对兄弟主持,他们是汤姆·马廖齐(Tom Magliozzi)和雷·马廖齐(Ray Magliozzi),二人都毕业于麻省理工学院。在节目中,两人会接听人们打来的询问有关汽车问题的电话。令人难以置信的是,节目十分搞笑,至少对两位主持人来说是这样,他们会因为自己的笑话笑个不停。[6]

在一次节目中,一个听众打电话来询问:“我的两个车前灯同时坏了,我把车开到修理店,但机械师却说我只需要换两个灯泡就行了。这可能吗?两个灯泡同时坏掉难道不是过于巧合了吗?”

汤姆立刻回答了这个问题:“啊,这就是著名的韦伯–费希纳定律!”原来汤姆也是一位心理学和市场营销学博士,师从判断和决策研究领域的顶尖学者马克斯·巴泽曼(Max Bazerman)。那么,这个问题与韦伯–费希纳定律有什么关系呢?该定律是如何帮助汤姆解答问题的呢?

答案是:两个灯泡实际上并不是同时坏掉的。其中一个灯泡坏了以后,我们还可以正常开车,所以毫无察觉,尤其是在夜间照明设施很好的城市。从两个灯泡照明变成一个灯泡照明往往不是一个可察觉的差异,但是从一个灯泡照明变成零个则绝对可以被察觉到。这种现象就解释了我行为清单中的一种:愿意多开10分钟的车去买便宜10美元的闹钟收音机,而不愿意多开10分钟的车去买一台便宜10美元的电视机。对于后者而言,10美元不是其最小可觉差。

人们对损失和收益的反应都遵循敏感性递减的规律,这一事实还说明了另外一点:人们会厌恶收益风险,而追逐损失风险,正如下面的实验所示。该实验分别实施于两组不同的实验对象。(请注意:以下两个问题的描述中只有一个词是不同的,以防实验对象像传统观点认为的那样,会根据财富的等级做出决策。)选择该选项的实验对象在相应的组中所占的百分比显示在括号中。

问题1:假设你比现在多拥有300美元,你要在以下两个选项中做出选择:

(a)100%可以得到100美元; [72%]

(b)有50%的机会得到200美元,有50%的机会一分不得。 [28%]

问题2:假设你比现在多拥有500美元,你要在以下两个选项中做出选择:

(a)100%会损失100美元; [36%]

(b)有50%的机会损失200美元,有50%的机会一分不失。 [64%]

人们会追逐损失风险,而厌恶收益风险,其实两者在逻辑上的道理是一样的。在问题2中,失去第一个100美元会比失去第二个100美元更令人痛心,所以实验对象宁愿承担失去更多的风险以求一分钱也不损失。他们尤其渴望消除全部损失,原因就在于图3中说明的人的第三个特点:厌恶损失。

我们再从图3中两条曲线的起点处看一下价值函数。请注意,损失函数曲线比获益函数曲线的走势更加陡峭:损失曲线的下降速度比获益曲线的上升速度要快。粗略地说,损失造成的伤害是收益带来的快乐的两倍,价值函数的这一特点真是让我大吃一惊。这张图也说明了禀赋效应:如果我拿走罗塞特教授所收藏的酒,他的痛苦将是得到同样一瓶酒的快乐的两倍,这也是为什么他绝不会购买一瓶价钱一样高的酒。损失造成的痛苦大于收益带来的快乐,这种现象被称为“损失厌恶”(loss aversion),它已成为行为经济学家最强大的研究工具之一。

所以,我们会通过变化感受生活,我们对损失和收益的敏感性都符合递减规律,而且损失造成的痛苦大于等量的收益带来的快乐。一幅图中竟然蕴含着如此多的智慧,更没想到的是,我在自己随后的职业生涯中会一直与这幅图打交道。

[1]我问过卡尼曼为什么要更改论文的题目。他的回答是:“价值理论容易产生误解,所以我们决定使用一个完全没有意义的词。不过,如果过一段时间后,这个理论幸运地成为一个重要理论,这个词就有意义了。‘前景’这个词就很合适。”

[2]1英里≈1.609千米。——编者注

[3]1英寸≈2.54厘米。——编者注

[4]5 280英尺=1 609.344米。——编者注

[5]圣彼得堡悖论:假设有人邀请你玩一个赌博游戏,游戏中你不断投掷硬币,直到硬币正面朝上为止,游戏结束。如果第一次投掷就成功了,可得2美元,如果第二次才成功,可得4美元,依此类推,如果第n次投掷成功,奖金为2的n次方美元。你预期得到的奖金是1/2×2美元+1/4×4美元+1/8×8美元……这一序列的数值将是无穷大的,那么为什么人们不愿意支付一大笔钱玩这个游戏呢?伯努利的回答是,假设随着财富的增加,人们对金钱的期望效用是递减的,就会产生风险厌恶现象。一个简单的解决办法是,设想世界上的财富是有限的,所以你应该担心如果赢了游戏,庄家能否支付起最后的金额。只需在第40次投掷时让硬币正面朝上,奖金就会超过1万亿美元,如果你认为庄家倾家荡产也支付不起奖金,那么玩这场游戏的价值将不超过40美元。

[6]汤姆·马廖齐于2014年去世,但该节目仍在重播,我们还可以听到两兄弟的笑声。

前景理论 / 规范性理论 / 描述性理论

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000