• 精选
  • 会员

数学课程(3)

2020年6月17日  来源:教育的本质 作者:(英)阿尔弗雷德·诺思·怀特海 提供人:yanjia82......

接下来我想讨论在基础数学课程即将结束之时,如何为更优秀的学生制订复习计划。毫无疑问的是,我们要对所学过的知识进行整体回顾,但不用包含那些过于细枝末节的知识,而应该强调一般性概念及其在未来学习中的重要性。同时,我们还要将分析法和几何理论直接运用到实验之中,在物理实验室里,一些简单的实验力学课程已经系统学习过了。从这里可以看出,物理知识和数学知识是相辅相成的。

数学知识是力学定律精确公式化的基础。只有学好数学原理,学生们才能理解精确的自然法则,明白这些法则在实验中得到了多大程度的论证,并了解形成公式的抽象思维是如何成形的。整个过程需要我们详细展开,为学生提供充足的实例,光是抽象说明是不够的。

然而,如果我们在最终的复习阶段,将过多的精力投入对过往内容的直接阐释中,反而得不偿失。我的意思是,在课程的最后阶段,我们应该对课程内容进行筛选,将过往所做的所有数学练习背后的一般原理放在首位。我们可以通过引入新的学科来做到这点。例如,数与量的概念是所有精确思维的基础。在过去的阶段中,我们不会对它们进行严格的区分,学生们也不用在这两者上花费多大精力,便能直接进入代数的学习。但在课程的最终阶段,那些更为优秀的学生将通过思考量的基本属性而大有所获,从而进入数字度量的领域。该领域也有很多书籍能帮助学生学习。专家们将欧几里得《几何原本》的第五卷视为古希腊数学最重要的杰作之一。该卷介绍的就是这方面的知识。传统数学教育最为愚蠢的是,忽视了这本书的重要性。因为这本书谈的是数学理论,所以就被舍弃了。当然,要使用这本书,我们必须对其中的命题和论证进行仔细的筛选和修订,选出那些能代表其主要思想的命题。这本书不适合处于下游的学生,但会吸引那些更为优秀的学生。他们能对量的性质和测算量的方式进行有趣的探讨。教授这本书的时候,我们不应该夸夸其谈。不论在哪一个阶段,我们都应该通过具体的案例,向学生们展示哪些情况下存在量的特征,哪些情况下不存在,哪些情况下量的特征不明显、不确定。温度、热度、电流、喜悦与痛苦、质量与距离都能被考虑进去。

另一个需要阐述的概念是函数。数学分析中的函数相当于物理中的定律和几何中的曲线。学生在开始接触代数时,即画图表的时候,就学习过函数与曲线之间的关系。近年来,我们对图表教学进行了不少改革。但就目前阶段而言,我们的改革不是太过激进,就是不够彻底。光是画图表是不够的。图表背后的理论才是令其生效的关键,就好比持枪者不扣动扳机,枪就无法发射子弹一样。而目前,我们只是倾向于让孩子画曲线而已。这一问题有待解决。

在学习简单的代数函数和三角函数时,学生们其实在学习如何精确地表达物理定律。曲线是展示这些定律的另一种方式。我们不应该教授简单的基本法则,例如平方反比和直接距离,而应该教授运用简单的函数来表现物理定律的重要实例。在课程最后的复习阶段,我们可以将主要的微分知识运用到简单的曲线之中。变化率并不是一个很难理解的概念,x的幂之间的区别,例如x2、x3等,都是很容易的知识点。在几何知识的帮助下,我们甚至能教会学生区分sinx和cosx。如果我们不再将学生们无法理解也永远不会用到的定理强行教给他们,我们就有足够的时间将他们的注意力集中到真正重要的知识点上,让他们熟悉真正对思维有益的概念。

在结束关于物理定律和数学函数的讨论之前,我想再指出几点。那些无法通过观察彻底得到证明的精确定律,要解释起来并不困难,而且也有很多合适的案例。例如,统计规律,即对大量事件整体起作用的规律,是很容易就能学会的知识点。事实上,代数运用的最简单的例子之一,就是将基本的统计法运用到社会现象之中。

另一个帮助学生将所学知识归纳统一的方法就是学习数学史。学生们要学的,不是里面的时间和人名,而是各个时期的思想潮流,正是这些思潮决定了哪些理论在提出之时能吸引人们的注意力。我认为,这或许是实现我所追求的教学结果的最佳方式。

至此,我们提到了两个方面,即量的概念和自然规律,这都是博雅教育的数学课程应该涵盖的知识点。但还有一点不能忽视,那就是训练逻辑思维方法的主要方式。

数学

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000