• 精选
  • 会员

量子力学危机四伏

2019年6月2日  来源:蔲享学术 作者: 提供人:kecai28......

4、危机四伏

索末菲尔德(Arnold Sommerfeld, 1868-1951)很快推广了玻尔的理论,他认为任何物理体系都可能处于分立的“稳态”,并且给出了更一般的“量子化”规则。利用这个推广的理论,索末菲尔德发现原子中的电子应该具有三个量子数而不是玻尔理论中的一个,并且他的量子理论可以解释更多的和原子相关的现象,比如斯塔克效应,塞曼分裂等。

玻尔清楚地知道自己的理论的不足。他的理论描述得最好的原子是氢原子,但即使对于氢原子,玻尔的理论也只能预言谱线的频率,无法描述谱线的强度,也不能预测氢原子中释放出来的光子的偏振。为了完善自己的理论,玻尔提出了一个半直觉的对应原则(correspondence principle),认为电子在能级间的跃迁概率可以用经典的麦克斯韦方程描述。结合爱因斯坦的自发辐射和受激辐射理论,玻尔成功地得到了能级间跃迁的选择定则。荷兰物理学家克雷默斯(Hendrik Anthony “Hans” Kramers, 1894-1952)利用这个对应原则进一步得到了所有氢原子光谱线的强度和偏振,和实验结果吻合得很好。

但是很快人们发现玻尔-索末菲尔德理论有很多缺陷,无法解释很多实验现象。可以说对应玻尔-索末菲尔德理论的每一个成功,就有一个失败。玻尔-索末菲尔德理论不能描述任何具有两个或两个以上电子的原子或分子。例如,它无法给出氦原子的谱线,不能描述分子间的共价键。到1924年的时候,原子物理学家们都觉得玻尔-索末菲尔德理论需要重大的修正。这个理论不但无法解释很多原子物理中的现象,而且自身的框架也显得非常琐碎,看起来是个东拼西凑的理论。玻恩(Max Born,1882 - 1970) 在1924年的一篇论文里开始呼唤新的“量子力学”(quantum mechanics)的出现。两年后,新量子理论真的被构造出来了,玻尔-索末菲尔德理论遇到的困难全部迎刃而解。

1900年-1924年是量子理论的萌芽期。在这二十多年时间里,物理学家取得的进展其实非常有限,所有的讨论几乎都是围绕能量的“量子性”展开:辐射的能量是一份一份的;电子只能处于一些分立的能级。爱因斯坦的光粒子说是个例外,这是现在人们熟知的波粒二象性的起点,但没有人继续发展和推广爱因斯坦的这个思想。现在回头看,这段时期的量子理论其实相当丑陋,到处是缺陷和漏洞:普朗克黑体辐射公式的推导是错的;爱因斯坦固体比热理论是通过类比得到的,非常不严谨;玻尔几乎是用一种拼凑的方式得到了氢原子的能级。这些缺点让年长的物理学家非常不舒服,他们选择了回避和不参与。年轻的一代虽然也知道这些缺陷,但他们更看重积极的一面:(1)和实验结果吻合;(2)经典理论不可能解释这些实验结果。

萌芽期后,量子力学得到了井喷式的发展。从1924年到1926年,短短的三年时间里,一群天资聪颖、勤奋、勇敢、性格各异的年轻物理学家,在没有任何协调组织的情况下,一起建立了量子力学所有的基本概念和理论框架。而且这些年轻的物理学家身处世界各地,只能通过书信和纸质的学术期刊交流。现在量子力学教科书里所讲述的基本概念和理论框架在1926年年底前发表的论文里都可以找到。狄拉克(Paul Adrien Maurice Dirac, 1902 - 1984) 1930年写的专著《量子力学原理》(The Principles of Quantum Mechanics) 时至今日依然没有过时,是每个物理系学生的必读。毫不夸张地说,这三年不只是科学史也是人类历史上的最辉煌的篇章之一。可惜,迄今为止普通大众对这段辉煌的历史知之甚少。

5、绝对的相同

日常生活经验告诉我们,只要我们足够仔细,我们总能区分两个物体。比如两枚一元的硬币,很多情况下,我们通过肉眼就能把它们区别开。如果肉眼区别不开,我们只要找一个倍数足够大的显微镜就肯定能区别。在日常生活中当我们说两个物体相同时,我们其实是说,对于我们关心的问题,它们间的区别不重要从而可以忽略不计。买东西时,即使一个硬币有个小缺角,我们也不在乎,认为它和其他硬币是一样的,因为它可以买来同等价值的物品。现在我们想通过投掷硬币来赌输赢。如果有两个硬币可以选择,一个有小缺角而另一个完好,这时我们会选择用那个完好的硬币。但如果两个硬币都是完好的,我们会认为它们一样而随机选一个,虽然我们知道在显微镜下这两个硬币看起来是不一样的。总而言之,在日常生活中,两个物体相同是个近似的说法,只要我们足够认真,总是能区分这两个物体。我们忽略这些小的区别,说两个物体相同是因为这些小的区别对我们关心的问题不重要。

但是物理学家发现,两个光子是完全相同的:没有任何观测手段可以区分两个光子。我们只能说一个光子具有频率ν1,一个光子具有频率ν2;我们不能说光子1具有频率ν1,光子2具有频率ν2。依次类推,两个电子是完全相同的,两个水分子是完全相同的,两个碳60分子是完全相同的,等等。总之,这种微观物体间的相同是完美的和绝对的,一种没有任何细小差别的相同。

这是量子力学和经典力学的一个本质区别之一。在量子力学里,相同是绝对的,不是近似。第一个发现微观粒子量子全同性的是印度物理学家,玻色(Satyendra Nath Bose , 1894-1974)。二十世纪初的印度,科学远远落后于欧洲,但最新科学成果虽然有些滞后依然顽强地传播到了印度,包括刚刚起步的量子物理,并激发了印度求知青年的兴趣。

量子力学简史--超详细的发展介绍

玻色1894年出生于印度的加尔各答。他父亲先在东印度铁路公司当职员后来自己开了公司,他母亲来自一个律师家庭,受过教育。玻色五岁开始上学,在学校表现优异。1909年,玻色在总统学院(Presidency College)开始了大学生涯,他选择了科学作为自己的专业。玻色于1913年获得了学士学位,1915 年获得了硕士学位。由于当时的印度在科学和教育上还很落后,玻色没有机会继续深造。在做了一年私人教师后,玻色获得了一个机会。加尔各答大学开始建立理学院,玻色成了这个理学院最早的物理教师之一。他和他的同事从一个曾经留学德国的朋友那里借来物理书和期刊,边自学边上课。1921年,玻色被达卡大学高薪挖走,他的任务是在达卡大学建一个物理系。在这里玻色写下了那篇令他永垂青史的论文。

玻色在这篇论文给出了一个新的推导普朗克黑体辐射公式的方法。我们前面提过,普朗克一直对自己的推导不满意,尝试了各种改进方法。现在回头看,普朗克的所有方法都是有缺陷的,因为他的各种尝试总是想尽量回到经典物理,这是注定要失败的。玻色在他的推导里又引入了一个新的完全突破经典的概念,光子是完全相同、不可区分的。基于这个概念再利用普朗克提出的光量子,玻色在人类历史上第一次给出了黑体辐射公式的正确推导。

玻色的突破是惊世骇俗。在这之前没有任何人意识到了量子物理和经典物理会有这种本质区别:在量子的世界里,相同是绝对的;在经典的世界里,相同只是一种近似。

但玻色论文的发表却遇到了些困难。他把论文投到了一个英国的期刊发表,没有成功。在1924年6月4日,玻色把论文寄给了爱因斯坦,希望他能帮忙让论文在德国的期刊发表。爱因斯坦立刻看出了玻色论文的重要性,他于1924年7月2日回复了一张明信片,告诉玻色:他已经将论文翻译成了德文,并安排在一个德国的期刊发表了。不但如此,爱因斯坦立刻将这个概念推广,既然光子是全同的、不可区分,那么其他粒子也是一样的。爱因斯坦为此连续发表了三篇论文,在这些论文里爱因斯坦预言了著名的玻色-爱因斯坦凝聚现象。七十年后,1995年物理学家利用超冷原子气验证了爱因斯坦的预言。

那么玻色是如何取得这个突破的呢?笔者认为是误打误撞。我们来看看玻色写给爱因斯坦的信。玻色这样写道:

尊敬的先生:

我斗胆把我的论文寄给您,希望您能审阅并给出意见。我非常急切地想知道您对论文的看法。你会看到,我成功地推导出来了普朗克公式中的系数8πν2/c3。我在推导中没有用经典电动力学,而是假设相空间应该被分成很多小格每格大小是h3。我的德文不够好,无法将论文翻译成德文。如果您觉得这个文章值得发表,请您帮忙安排它在Zeitschrift für Physik(一种德国物理期刊)发表。

尽管对您来说,我是一个完全的陌生人,我还是毫不犹豫地向您发出了这个请求。因为我们都是您的学生虽然我们只能通过阅读您的论文受到教诲。

您真诚的玻色,1924年6月4日

玻色在信中完全没有提及光子的不可区分,玻色在他的论文里也没有明确提及这点。一个合理解释是这样,在推导过程中,玻色需要把光子放入他说的“小格”里,并计算所有可能的组合方式。在计算组合方式时,他在自己没有意识到的情况下把光子当作了不可区分。如果他把光子看作是可区分的,就会得到不同的组合数,从而无法推导出普朗克的公式。但爱因斯坦一眼就看出来了,并急切地做了推广,如果玻色获得了深造的机会(在印度或在欧洲),他的基本功可能会更扎实些,这样他或许就不会犯这个“光彩夺目”的错误了。

量子力学简史--超详细的发展介绍

与此同时,独立于玻色和爱因斯坦,三个年轻的天才也开始关注这个问题。他们是泡利(Wolfgang Pauli, 1900-1958)、费米(Enrico Fermi, 1901-1954)和狄拉克。泡利1900年出生于奥地利,父亲是化学家,教父是著名的物理学家马赫,母亲是一位作家的女儿。泡利自幼就显出了极高的天分,18岁高中毕业后刚刚两个月就发表了自己第一篇论文,在论文里他研究了广义相对论。随后泡利成为索末菲尔德的学生,并于1921年获得了博士学位。泡利是个完美主义者,不但自己尽量做到完美,而且当看到别人的“不完美”工作,也会毫不留情地批评。或许因为太追求完美,他不愿意发表论文,他对物理的很多贡献只能在他和朋友的通信里找到。

量子力学简史--超详细的发展介绍

费米于1901年出生在罗马他父亲是个政府职员,母亲是个小学教师。费米从小喜欢玩各种电动和机械玩具,会如饥似渴地阅读他能接触到的任何物理和数学方面的书籍。高中毕业后,费米参加大学的入学考试,考试的题目是《声音的特征》,费米用傅里叶分析法解了一个关于振动长棍的微分方程。主考教授非常欣赏,给了他最高分。意大利虽然是伽利略(Galileo Galilei, 1564-1642)的故乡,当时的意大利物理水平却远远落后于德国、英国和法国。上了大学后,费米基本上还是自学物理,大学里的物理教授们发现没有什么东西可以教费米,教授们反而经常向费米请教问题。他们甚至让费米来组织量子物理方面的学术报告。费米于1922年获得了博士学位。费米是少数几个同时精通理论和实验的物理学家。

量子力学简史--超详细的发展介绍

狄拉克1902年生于英国的布里斯托(Bristol),父亲是一个法语老师,母亲则在图书馆工作。狄拉克在他父亲任教的技术学校上中学,除了普通的中学课程,他还要上制图、铁艺等技术课程。狄拉克几乎每门课都是第一名。随后他进入布里斯托大学,专业是电子工程。大学里,除了规定的课程,狄拉克自学了包括相对论在内的很多物理数学知识。1921年大学毕业时,他获得了去剑桥大学深造的机会,但是由于剑桥提供的奖学金太少,没有成行。祸不单行,作为一个工程系的毕业生,狄拉克也没有找到工作。他回到布里斯托大学继续学习,这一次专业是数学。1923年,狄拉克又毕业了,这时他获得一个更高的奖学金,终于如愿进入了剑桥大学,开始了自己的科学生涯。狄拉克性格孤僻、少言寡语、不善于和别人交流,为此留下了很多趣闻轶事。有一次,狄拉克做完学术报告后,有人举手说道,“我不理解黑板右上角的那个方程。”狄拉克没有任何回应,过了相当长时间,主持人试图打破这个尴尬的局面,礼貌地催促狄拉克,狄拉克答到,“那不是一个问题,只是一个评论。”按照现代医学的标准,狄拉克很可能是一个自闭症患者,但这完全没有影响他的研究,或许还有帮助。

意气风发的泡利在拿到博士学位后来到了哥廷根,师从玻恩。1922年,玻尔到哥廷根访问,给了一个系列讲座,介绍自己如何用量子理论来解释为什么元素周期表是那样排列的。玻尔尽管取得了一些进展,但依然无法解决其中最大的困难,电子为什么不聚集到最低的能级上?这个问题从此一直萦绕在泡利的脑海。经过三年多的思考和研究,在他人结果的启发下,泡利终于在1925年把这个问题想清楚了。为了解释元素周期表,必须做两个假设:(1)除了空间自由度外,电子还有有一个奇怪的自由度;(2)任何两个电子不能同时处于完全相同的量子态。第一个假设很快被证实,这个奇怪的自由度就是自旋。第二个假设现在被叫做泡利不相容原理。

费米自1924年就开始思考电子是否可区分的问题。前面提到,玻尔和索末菲尔德的量子理论完全无法解释氦原子的光谱。费米猜想主要的原因是氦原子里的两个电子完全相同,不可区分,但他一直不知道该如何开展定量的讨论。看到泡利的文章后,费米立刻清楚了自己该做什么。在1926年,他连续发表了两篇论文。费米的第一篇论文是意大利文的,他简短地介绍了一下自己的结果;费米的第二篇论文是德文的,他详细描述了自己的结果。费米在文章中描述了一种新的量子气体,气体中的粒子完全相同不可区分,而且每个量子态最多只能被一个粒子占据。这与玻色和爱因斯坦讨论过的全同粒子有什么不一样呢?我们前面没有提及的是,对于玻色和爱因斯坦讨论的全同粒子,它们可以占据同一个量子态。几个月之后,狄拉克利用一个新方法重新讨论了这个问题,系统地给出了全同粒子的性质。

现在我们都知道,微观粒子分为两类:一种叫玻色子;另一种叫费米子。光子、氢原子等是玻色子;电子、质子等是费米子。玻色子满足玻色-爱因斯坦统计:同一个量子态可以被多个玻色子占据;费米子满足费米-狄拉克统计:一个量子态最多只能被一个费米子占据。

量子力学 / 玻色 / 玻尔 / 爱因斯坦 / 泡利 / 费米 / 狄拉克

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000