传统科学思维中,决策制定往往是“目标”或“模型”驱动的,也就是根据目标(或模型)进行决策。然而,大数据时代出现了另一种思维模式,即数据驱动型决策,数据成为决策制定的主要“触发条件”和“重要依据”。
小数据时代,企业讨论什么事情该做不该做,许多时候是凭感觉来决策的,流程如图所示,由两个环节组成:一个是拍脑袋,另一个是研发功能。
基本上就是产品经理通过一些调研,想了一个功能,做了设计。下一步就是把这个功能研发出来,然后看一下效果如何,再做下一步。
整个过程都是凭一些感觉来决策。这种方式总是会出现问题,很容易走一些弯路,很有可能做出错误的决定。
数据驱动型决策加入了数据分析环节,如图所示。
基本流程就是企业有一些点子,通过点子去研发这些功能,之后要进行数据收集,然后进行数据分析。基于数据分析得到一些结论,然后基于这些结论,再去进行下一步的研发。整个过程就形成了一个循环。在这种决策流程中,人为的因素影响越来越少,而主要是用一种科学的方法来进行产品的迭代。
例如,一个产品的界面到底是绿色背景好还是蓝色背景好,从设计的层面考虑,两者是都有可能的。那么就可以做一下 A/B 测试。
可以让 50% 的人显示绿色背景,50% 的人显示蓝色背景,然后看用户点击量。哪个点击比较多,就选择哪个。这就是数据驱动,这样就转变成不是凭感觉,而是通过数据去决策。
相比于基于本能、假设或认知偏见而做出的决策,基于证据的决策更可靠。通过数据驱动的方法,企业能够判断趋势,从而展开有效行动,帮助自己发现问题,推动创新或解决方案的出现。