• 精选
  • 会员

从第三范式到第四范式

2019年10月23日  来源:一只没梦想的桔子 作者: 提供人:chenao99......

对研究范式的新认识:从第三范式到第四范式#

2007 年 1 月,图灵奖得主、关系型数据库鼻祖 JimGray 发表演讲,他凭着自己对于人类科学发展特征的深刻洞察,敏锐地指出科学的发展正在进入“数据密集型科学发现范式”——科学史上的“第四范式”。

在他看来,人类科学研究活动已经历过三种不同范式的演变过程。

“第一范式”是指原始社会的“实验科学范式”。18 世纪以前的科学进步均属于此列,其核心特征是对有限的客观对象进行观察、总结、提炼,用归纳法找出其中的科学规律,如伽利略提出的物理学定律。

“第二范式”是指 19 世纪以来的理论科学阶段,以模型和归纳为特征的“理论科学范式”。其核心特征是以演绎法为主,凭借科学家的智慧构建理论大厦,如爱因斯坦提出的相对论、麦克斯方程组、量子理论和概率论等。

“第三范式”是指 20 世纪中期以来的计算科学阶段的“计算科学范式”。面对大量过于复杂的现象,归纳法和演绎法都难以满足科学研究的需求,人类开始借助计算机的高级运算能力对复杂现象进行建模和预测,如天气、地震、核试验、原子的运动等。

然而,随着近年来人类采集数据量的爆炸性增长,传统的计算科学范式已经越来越无力驾驭海量的科研数据了。例如,欧洲的大型粒子对撞机、天文领域的 Pan-STARRS 望远镜每天产生的数据多达几千万亿字节(PB)。很明显,这些数据已经突破了“第三范式”的处理极限,无法被科学家有效利用。

正因为如此,目前正在从“计算科学范式”转向“数据密集型科学发现范式”。

“第四范式”的主要特点是科学研究人员只需要从大数据中查找和挖掘所需要的信息和知识,无须直接面对所研究的物理对象。例如,在大数据时代,天文学家的研究方式发生了新的变化,其主要研究任务变为从海量数据库中发现所需的物体或现象的照片,而不再需要亲自进行太空拍照。

大数据

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000