8. 分形城市:社会与自然一体化
作为构成城市的两大主要因素,物理基础设施和社会经济活动都可以概念化为自相似分形网络结构。分形通常是进化过程的结果,在这一过程中,某些特点得到不断优化,如确保生物体中的所有细胞或城市中的所有人都能够得到能量和信息的供应、通过使运输时间最小化实现效率的最大化、用最小的能量在最短时间内完成任务等。不太明显的是社会网络中被优化的因素。例如,并没有令人信服的基于基础原理的解释,用来帮助人们理解邓巴发现的层级结构,或他的数字序列的来源。即使社会大脑的假设是正确的,也无法解释社会组织分形特点的由来或数字150源于何处。有迹象表明,这些普遍性特点来自此前提出的猜测,即利己主义(所有个体和公司都想要使自己的资产和收入最大化)和社会空间最大填充的概念是根本驱动力。肯定还有很多工作等待我们去做,从而构建社会网络的量化理论,许多令人感到兴奋的挑战也等待着我们进一步去发掘。
城市中的所有社会经济活动都围绕着人与人之间的互动进行。就业、财富创造、创新和观念、传染病的传播、医疗卫生、犯罪、维护治安、教育、娱乐等现代智人的所有追求,同时也是都市生活的标志,都是以人与人之间信息、产品和金钱的持续交换为支撑,并因此而产生的。城市的职责是推动并增强这一过程,提供适当的基础设施,如公园、餐厅、咖啡馆、体育馆、电影院、剧院、公共广场、市场、写字楼和会议厅等,以鼓励并强化社会互动。
因此,反映此类活动的所有社会经济指标都与城市中的人们之间连接的数量或产生的互动成比例关系,我们在此前回顾城市规模法则时也讨论过这些指标。如果每个人都能与其他任何人相互作用,在一年的时间内,每个人都与城市中的其他所有人进行过有意义的互动,人们之间互动的总量便可以通过一个简单的公式计算出来:用城市人口总数乘以每个人可以联系到的其他人的总数,即城市人口总数减1。例如,如果你是一个10人小组中的一员,你只能同其他9个人相互联系。此外,你还要把结果除以2,因为你和其他人的联系与其他人与你的联系没有什么不同,你不能重复计算两次,它们是对称的,是一回事。
因此,城市居民之间成对联系的总数,便是城市人口总量×(城市人口总量–1),然后再除以2。这看上去似乎有些拗口,但其实非常简单,我将会举例进行解释。
如果只有2个人,例如只有你和你的伙伴,根据上述公式,联系的总数将是2×(2–1)÷2= 2×1÷ 2 =1,这个答案显然是正确的:你们两人之间只会有一个简单的联系。让我们假设又增加了一个人,形成了三人组,根据上述公式,就会有3×(3–1)÷2 = 3×2÷2=3个相互独立的成对联系,这显然也是正确的:A和B,B和C,C和A。现在,让我们将人数增至4人,联系的数量将变成4×3÷2=6,这比仅有3人时翻了一番,尽管只增加了1人。假设我们将人数再翻一番,增加至8人,联系的数量便会从6增长至8×7÷ 2=28,增长了4倍多。如果人数再次翻番,增长至16人,联系的数量可能会再增长4倍多,从28增长至120。事实上,规模每次翻番,联系的数量便会增长4倍左右。其中的经验是明确的:人们之间联系的增速要比人数的增速快得多,接近于人数平方的一半。
人们之间联系的最大数量与总人数之间的简单非线性二次平方关系带来了各种各样有趣的社会影响。例如,我的妻子杰奎琳(Jacqueline)很喜欢晚餐聚会,喜欢大家围在一起讨论一个简单的话题。因此,她不愿意参加人数超过6人的晚餐聚会。在6个人的聚会中,两两独立的对话数量可能会是6×5÷2=15,而这些对话都必须被“压制”,以使一个单独的集体话题出现并持续下去。这是有可能的,人们可能会猜测,其他客人的数量——5,正好呼应了邓巴提出的普通人核心圈规模的数字。如果桌上坐着10个人,就会有45种类似的二元可能性,这会不可避免地导致群组的巴尔干化,会分裂为2个、3个或者更多的单独对话。当然,许多人更喜欢这种形式,但值得我们牢记的是,如果你想要达到某种群体亲密,超过6个人将会变得极具挑战性。
与大多数家庭相比,我祖父母的家庭规模都更加庞大,由10个人组成:8个孩童和2个成年人。因此,在不同的年龄和个性之间,便会产生45种二元的关系,带来了互动的多样性。
如果这些互动遵循邓巴模式,除了父母,每名儿童都会与2名或3名手足存在密切联系。任何人都无法做到平等地爱每一个人,这通常是现实情况。另一方面,我的核心家庭成员包括我的妻子和我们的两个孩子,这个由4人组成的小团体会产生6种相互独立的关系。我的每一个孩子只需要处理5种不同关系即可,而我的祖父母要应对44种关系,尽管其群体人口数量只是我们家庭的两倍半。如果不对家庭规模大小的优点和缺点进行评判,人们很难不被这种差异巨大的家庭动力学所触动,并猜测由此可能会产生影响深远的社会心理后果,即20世纪随着家庭规模的缩小,社会心理必然会产生变化。
现在,让我们回过头来看看这在整座城市中是如何产生的。如果一个庞大快乐的家庭中的每一个人都能与其他人产生有意义的互动,上述论点就意味着,所有的社会经济指标都应该随人口规模的平方按比例增长。这意味着指数为2,肯定是超线性的(它比1大),但远远大于1.15。然而,这是极端、不现实的例子,它假设所有人都处于一种狂热的状态中,持续、完整地与自身进行互动,就像是葡萄干或坚果在超高速电子搅拌器的作用下在蛋糕面团中不断翻滚。这很明显是不可能的,而且也不是人们所希望的。即使是在人口仅有20万的小城市,都会产生大约200亿种可能的人际关系,即使每个人每年只花1分钟处理每段关系,他们也必须花费一生的时间来与其他人相互联系,这会使他们没有时间从事其他事情。设想一下将之延伸至纽约或东京。邓巴数字也存在限制,根据这一规律,我们难以与超过150人的人群保持有意义的关系,更别提与数十万或几百万人保持联系了。正是这一互动数量的限制使得超线性指数远低于其最大的可能值——2。
这表明,社会互联和社会经济数量规模会随人口规模变化而超线性变化存在天然的解释。社会经济数量是人们之间互动或联系的总和,取决于他们如何相互联系。在极端的情况下,每个人都与其他所有人互动,这便会导致指数为2的超线性幂律。然而,在现实中,存在诸多能够影响每个个体能够与多少人互动、互动的密度和广度如何的因素,这些都会使指数的数值小于2。
我们与城市中的其他人进行互动的数量和频率受限的根本原因在于空间和时间所造成的潜在限制。一个显而易见却微妙无比的根本限制是,我们所有的互动和相互关系都必须发生在物理背景下,无论是在房屋、办公室、剧院、商店还是在大街上。无论你如何与其他人沟通,即便是在手机上通过卫星以光速交流,还是在互联网上购买你需要的所有产品和供给品,你必须身在某地。你或许会坐在一栋建筑物内的某个房间里,站在或走在大街上,乘坐地铁或公交车,但无论你身在何处,你必须处于某种物理空间内。我强调这一显而易见的事实是因为,互联网的发展和网络科学的快速发展使人产生了一个具有误导性的印象,即社会网络悬浮在空间内,似乎不再被重力和物理世界所累。这正是我在前面介绍的社会网络被视作中心和连接的常规印象的一个实例。这些社会互动的拓扑表现是受到网络理论启发而形成的抽象概念,将个体描述为悬浮在多维空间内、缺乏肉体性的短暂存在,而非坐在厨房、咖啡馆、办公室、大巴车上相互交谈的真实人类。令人感到惊讶的是,尽管最近有大量关于社会网络的组织、结构和数学的研究,几乎没有人承认它们与物理世界的现实之间存在直接和必要的联系。这里的物理世界主要是指城市环境。
这便是一座城市的基础设施发挥作用的地方:正如我此前所强调的那样,基础设施在城市中的角色是推动和促进社会互动。这又引发了另外一点:我们不仅必须身处城市中的某处,同样重要的是,至少在某个时间段内,我们还必须从某个地方走到另外一个地方。城市中的人不能是静止不动的,他们的移动对于他们的生存和活力至关重要。我们一直在从一个地方移动到另外一个地方,无论是去办公室或工厂上班,还是返回家中睡觉和吃饭、前往商店购买食品,或到剧院娱乐。从日和周的时间框架来看,城市中的人们事实上是在不断移动的状态之中,这种状态与城市的交通系统相互交织并受到后者的限制。对于城市运转至关重要的移动性和社会互动造成了空间和时间上的限制,这与社会和基础设施网络的结构、组织和动力学存在密切的联系。
在第3章和第4章中,我已经对生物学中的普遍规模法则进行了解释,同时也揭示了理解生物系统诸多方面的宏观理论,这些理论在网络的通用数学性质的基础上发展而来。同样,基于城市中社会和基础设施网络的普遍特性的观念必须被翻译成为数学语言,以发展出类似的、能够推导出城市规模法则的宏观城市理论。在后面的内容中,我将努力说明,这些是如何不借用奇妙的技术细节、只聚焦于概念框架及其中所涉及的必要特点便得以实现的。
按照这种精神,个体被视作社会网络中的“不变终端单位”,这意味着,平均而言,每个人都在城市内大致相当的社会和物理空间内活动。这与邓巴数字以及城市中移动的时空限制所带来的影响一致。回想一下,我们所处的物理空间中充满了空间填充的分形网络,如道路和服务于基础设施终端的公共事业管线,这些终端包括我们居住、工作和互动的房屋、商店和办公楼,而且我们也必须在它们之间移动。这两种网络的整合,即空间填充的分形社会网络所代表的社会经济互动必须固定在城市的物理空间之中,而这则是以空间填充的分形基础设施网络为代表的,它们决定了一座城市中的居民平均互动的数量。正如此前讨论过的那样,这个数量决定了社会经济活动如何随人口规模按比例缩放。
把城市比喻为活着的生物体主要源自其物理特性。这在运输能源和资源的网络中表现得最为明显,如电、气、水、汽车、卡车和人等,正是城市的这些组成部分使得其类似于生物界的网络,比如我们的心血管和呼吸系统,或者植物和树木的维管系统。空间填充、不变终端单元和优化(例如,旅行时间和所耗能量最小化)这三个观念组合在一起使得这些网络具有分形特点,一些基础的指标根据亚线性指数的幂律按比例变化,该指数表明其规模经济遵守15%法则。
当这些对于移动性和城市居民之间的物理互动空间的限制被施加在社会网络的结构中之后,就会产生一个重要的、意义深远的结果:一座城市中平均每个居民与其他人的互动数量与随城市规模而变的基础设施建设规模呈反比关系。换句话说,基础设施与能量利用的亚线性规模缩放的程度与普通个体社会互动超线性规模缩放的程度相当。由此一来,控制社会互动的指数,以及所有的社会经济指标——好的一面、坏的一面、丑陋的一面与城市规模之间的比例缩放关系遵循15%法则——均大于1(1.15),正如控制基础设施和能量以及资源流动的指数均小于1(0.85),数据表明了这一点。图7–2~图7–6中所有斜线的斜率均超过1,其程度等同于图7–1中斜线的斜率小于1的程度。
从网络缩放的意义上说,物理性和社会性相互对照,我们可以把物理城市及其建筑物、道路、电路、燃气管道、水管等网络想象成与社会经济城市及其社会互动网络相反的非线性代表。城市就是人。
城市规模每扩大一倍所带来的社会互动以及收入、专利、犯罪等社会经济指标15%的增长可以被看成物理基础设施和能量使用节约15%所带来的额外红利或报酬。社会互动的系统性增长是城市中社会经济活动的根本驱动力:财富创造、创新、暴力犯罪以及繁荣和机遇都通过社会网络和范围更广的人际互动而得到传播和提升。
但城市同样可以被看作社会化学反应的催化剂和熔炉,社会互动的增多带来了创意、创新和机遇的增长,而它们的红利则是基础设施规模经济的增长。正如提高气体或液体温度便会使分子之间的碰撞率增长一样,城市规模的增长也会使其居民之间的互动率和互动数量增长。打个比方,扩大城市的规模可以想象成提高其温度。从这个意义来说,纽约、伦敦、里约和上海都是热城市,尤其是与我居住的圣塔菲相比,最初用于形容纽约城的“熔炉”恰恰是对这一比喻的绝佳表达。
无论其规模如何,一座成功城市的标志是,它能够提供物理环境、文化和风景,利用其具有吸引力的城市风景和聚会场所,用户友好型和易用的交通及交流系统,以及对于社区、商业、文化、承诺和领导角色等观念的支持,推动并提高多样化的社会互动。城市其实就是刺激和融合物理与社会之间持续的正反馈动力学的机器,两者之间的相互作用使对方成倍增长。正如我在下一章即将阐释的那样,正是这一倍增机制最终带来了开放式指数级增长,而这正是经济与城市的特点,我们已经对这种增长上瘾了。
或许并不令人吃惊的是,社会互动、社会经济活动增长与更大的规模经济之间存在相互关系。然而,令人吃惊的是,遵循这一简单数学法则的重要相互关系可以表现为一种优雅的普遍形式:基础设施和能量使用的亚线性恰巧与社会经济活动的超线性相反。因此,按照相同的15%法则,城市越大,每个人的收入、创造、创新和互动越多,每个人所经历的犯罪、疾病、娱乐和机遇也越多,而所有这一切都要求每个人使用的基础设施和能量却越少。这是城市的天才之处。难怪这么多人都被城市吸引。
社会经济活动与基础设施规模经济之间的紧密反比关系源于作为二者基础的网络结构的反比关系。尽管社会和物理网络有着相同的属性特点,比如都是分形的、空间填充的,而且都有不变的终端单元,但二者之间依然存在某些重要的差异。其中一个会导致重要后果的主要差异是,网络内的规模和流动随着层级结构中的等级变化而按比例缩放。[18]