有一天,上面故事中的这对恋人的女B过生日,两人庆祝生日不是去看电影,而是跑去切蛋糕了。那么怎样才能保证分配的公平合理呢?
最简单的一个方法,就是一方将蛋糕一切两半,另一方则选择自己分得哪一块蛋糕。不妨假设切蛋糕这种累活分配给男A,女B则在两块蛋糕中选择一块。
很显然,男A在这种切冰淇淋蛋糕的规则下一定是努力让两块蛋糕切得尽量相同大小。这就是著名的最后通牒博弈(Ultimatum games)。然而在现实中,谁都不可能将两块蛋糕切得完全一样大。就算使用高精密仪器去测量,使用高精密刀具去切割,这样做的成本太高,实在是得不偿失。
当然,在实际中,总是女士优先,男士礼让,不管谁去切,女士分得的蛋糕一定是比较大的那一块。如果这位女士还要保持身材,坚持减肥,最后吃到肚中最多的还是男士。
然而,如果两人都是斤斤计较、毫不体谅对方的人,他们都不愿意先去切这块蛋糕,于是又有了另一种分配蛋糕的规则。不妨假设蛋糕总量为1,男A和女B各自同时报出自己希望得到的蛋糕的份额,如4/5,8/9。他们之间约定,两人所报出的份额相加总和必须等于1,否则从新分配。
从数学上可以得到,这个两人博弈的纳什均衡点会有无数个,只要两人所报出份额相加之和为1的组合都是均衡结局,比如男A报1/2,女B报1/2;男A报2/3,女B报1/3,依此类推。
这里的问题在于如果女B报8/9,男A报1/9。这个时候男A也只有接收这个条件,因为这是一次性博弈,如果男A不接收那么双方连一丁点的蛋糕都分不到,从理性人的角度来看这显然不会出现的。
在实际生活中,除了绝对的利他主义者,或者带有其它目的的博弈参与者,显然8/9的蛋糕归某一参与者,剩余的部分仅仅1/9的蛋糕留给另一参与者的情况是很难发生。就这个例子来看,男A一定不满足于只能分到1/9的蛋糕,他一定要求再次分配。这种情况下,分蛋糕的博弈就不再是一次性博弈。
事实上,当分蛋糕博弈成为一个动态博弈时,这就形成一个讨价还价博弈的基本模型。在经济生活中,不管是小到日常的商品买卖还是大到国际贸易乃至重大政治谈判,都存在着讨价还价的问题。
比如中国加入WTO的时候,为了国家或民族利益与许多发达国家的讨价还价,进行了漫长而又艰难的谈判。一个谈判的过程实际上就是很多讨价还价的过程组成的。
比如发达国家首先对中国提出一个要求,中国决定是接受还是不接受,假如中国不接受,可以提出一个相反的建议,或者等待发达国家从新调整自己的要求。这样双方相继行动,轮流提出谈判要求,形成了一个多阶段的动态博弈。
我们来看这样一个故事。在某个朝代有个破落贵族的后代A,穷困得实在没有办法过下去,不得不将家中祖传的古字画拿到一个大财主B家去卖。这副字画在A看来至少值200两银子,财主B认为这副字画最多只值300两银子。
这样看来,如果顺利成交,字画的成交价格将在200~300两银子之间。这个交易的过程不妨简化为这样:首先由B开价,A选择成交或还价。这个时候,如果B同意A的还价,交易顺利结束;如果B不接受,则交易结束,买卖没有做成。这是一个很简单的两阶段动态博弈的问题。
我们应该解决动态博弈问题的倒推法原理来分析这个讨价还价的过程。首先看第二轮也就是最后一轮的博弈,只要A的还价不超过300两银子,B都会选择接受还价条件。
回过头来,我们再来看第一轮的博弈情况,A拒绝由B开出的任何低于300两银子的价格,这是很显然的,比如B开价290两银子购买字画,A在这一轮同意的话,只能卖得290两;如果A不接受这个价格反而在第二轮博弈提高到299两银子时,B仍然会购买此副字画。两项比较,显然A会还价。
细心的读者可以发现,这个例子中的财主B先开价,破落贵族A后还价,结果卖方A可以获得最大收益,这正是一种后出价的“后发优势”。这一优势在这个例子中相当是分蛋糕动态博弈中最后提出条件的人几乎霸占整块蛋糕。
事实上,如果财主B懂得博弈论:他可以改变策略,要么后出价,要么是先出价,但是不允许A讨价还价。如果一次性出价,A不答应,就坚决不会再继续谈判,来购买A的字画。这个时候,只要B的出价略高于200两银子,A一定会将字画卖于B。因为200两银子已经超出了A的心理价位,一旦不成交,那一文钱也拿不到,只能继续受冻挨饿。
在博弈理论中已经证明出,当谈判的多阶段博弈是单数阶段时,先开价者具有“先发优势”。它是双数阶段时,后开价者具有“后发优势”。
这在我们的生活中是非常常见的现象:非常急切想买到物品的消费者,往往要以较高的价格,购得所需之物;急于销售产品的业务员,往往也是以较低的价格,卖出自己所销售的商品。
正是这样,富有购物经验的人买东西、逛商场时总是不紧不慢,即使内心非常想得到某种物品都不会在商场销售员面前表现出来。而富有销售经验的店员们,总是会用“这件衣服卖得很好,这是最后一件”这样的陈词滥调,来让没有经验的顾客来不及讨价还价就迅速购买。