积的乘方法则
( ab )n = an bn(n 是正整数)
( abc )n=an · bn · cn
积的乘方,等于各因式乘方的积.
计算: (1) (ab)8 ; (2) (2m)3 ; (3) (-xy)5; (4) (5ab2)3; (5) (2×102)2; (6) (-3×103)3.
解:
(1)原式=a8·b8;
(2)原式= 23 ·m3=8m3;
(3)原式=(-x)5 ·y5=-x5y5;
(4)原式=53 ·a3 ·(b2)3=125 a3 b6;
(5)原式=22 ×(102)2=4 ×104;
(6)原式=(-3)3 ×(103)3=-27 ×109=-2.7 ×1010.
计算: -2(a2)3 · (a3)2 · a -(-a) 2 ·(-a)3 · (a4)2.
解: -2(a2)3 · (a3)2 · a-(-a)2 ·(-a)3 · (a4)2
= -2a6 · a6 · a –a2 ·(-a)3 ·a8
= -2a6+6+1 + a2+3+8
= -2a13+a13
= -a13.
计算: 2(-a)2 · (b2)3 -3a2 ·(-b3)2.
解:2(-a)2 · (b2)3 -3a2 ·(-b3)2
= 2a2b6 -3a2b6
= -a2b6.
能力提升:如果(an·bm·b)3=a9b15,求m, n的值.
解:
∵(an·bm·b)3=a9b15,
∴ (an)3·(bm)3·b3=a9b15,
∴ a 3n·b3m·b3=a9b15 ,
∴ a 3n·b 3m+3=a9b15,
∴ 3n=9,3m+3=15.
∴ n=3,m=4.