天才的细胞
到目前为止,我只是讨论了DNA层面的信息管理。如果其他有机体也采用基因信息处理的方式,那么怎样才能在进化这场军事竞赛中胜出呢?一种方式是细胞运用其他工具进行信息储存和信息更换,建立新的级别,不仅涉及各种“想法”的结构和范围,还要能进行运算。
计算机的应用使科学领域发生了革命性的变化。上周我花了几天时间,分析了一个功能性磁共振成像数据库。准确地说,是我的计算机做的分析。计算机需要进行超过30亿次的运算才能得出结果。对科学家来说,计算机是无可替代的工具,在收集和分析信息方面起了巨大的作用。
如果一种生物不仅在随机的基因突变中比其他生物优秀,而且具有很强的计算功能,那么这种生物在竞争中就具备了优势。
目前,基于DNA的“想法”只有通过进化才能更新。也就是说,通过有机体的更新换代,那些仍然能够继续生存的基因(或基因集合)被选中,而另外一些则被淘汰。这种了解周围环境的方式效率太低:在充分学到一些经验之前,上百万种生命形式已经消亡了。较为理想的一种方式是,在有机体的一个生命周期内就获取相关知识。
听起来似乎只有动物才能做到这一点。实际上,包括细菌在内的很多单细胞生物也以这种灵活的方式处理信息。
这一方式的主要机制是由基因编码形成的蛋白质。一些蛋白质之间相互作用,按照逻辑规则进行基本运算;另一些蛋白质则负责收集环境信息;还有一些蛋白质返回到制造它们的DNA分子上,通过调控不同基因从而改变其他蛋白质的功能。通过蛋白质的这种信息交流方式,大量复杂活动得以正常进行,还可获得高效的学习形式和有用信息。
同源异型基因的例子可以说明复杂概念的形成。同源异型基因通过激活或压制其他基因,决定动物胚胎时期肢体的位置和数量。一些同源异型基因会下降一个等级,去调控其他基因的行为。[1]人类的活动与此类似。比如一个大公司里不同岗位等级的职员形成一个员工网络;或者我们所做的不同层次的归类,如便携式电脑属于电脑,电脑是一种电子设备,电子设备属于机器范畴,所有机器都是工具,工具属于物体,等等。大多数复杂的系统都受益于不同等级的知识和管理,包括单细胞生物。
但是更让人惊奇的是,一些微生物以蛋白质为基础进行运算,表现出了很强的学习能力。以细菌为例,细菌通过释放化学信号互相交流,如果化学信号暗示缺乏食物,每个细菌会分散到在一个区域内,最大限度地消费可用的一点食物。
原生动物和细菌在碰到不同类型的食物或潜在的危险时,甚至会运用一些基本的学习和记忆形式。例如,在直肠内的细菌如果发现合适的食物,它们会为消化附近可能出现的相关食物做准备。这就像在做某种预测,如果不能很快找到相关食物,它们就会放弃。
[1]人类基因组大约有23 000个基因,这一数目与其他生物相比要少很多。作为有着地球上最为复杂的器官(人脑)的生物,这一数目也是极少的。然而,通过一些聪明的技巧(如一个基因可以参与多种蛋白质的编码,基因的不同控制等级,等等),我们可以最大限度地利用这些少量的基因。衡量有机体复杂性更理想的标准是蛋白质的数量,而不是基因的数量。在这方面,我们人类远远胜过其他生物。
内在进化
进化支持那些通过高效学习获得的准确的内部信息,但这一过程有不少重要的限制因素。首先,要提高内部信息的准确性,就需要更多的能量来维持知识增长,而一旦食物供应不足,有机体就变得很脆弱。而且,要产生大量的不断增加的“想法”,需要有机体变得越来越复杂,这样就会降低有机体的复制速度。不管此刻的“内部信念”如何准确,但是环境瞬息万变,如果有机体不勤于复制后代,那么“想法”——如果有任何“想法”的话,比如记忆——中包含的关键的DNA成分就不能很快更新以赶上变化,这样有机体很有可能会消亡。最后,要储存所有这些额外的“想法”,要求有机体的体积更大、结构更复杂,而如此庞大的生物机器更容易遭受失败。
细菌恰好符合这种要求。细菌具有一定的复杂性,但复杂的程度又不至于给生存带来压力。一方面,细菌处理信息的方式很聪明;另一方面,细菌结构简单,形体微小,因而能进行快速有效的复制。以任何一种标准进行衡量,细菌都是地球上最为成功的生物类型。从数量上看,细菌的数目是惊人的,达1030个;从类型上看,世界上任何地方、任何气候条件下都有不同种类细菌存在,细菌甚至能在酸性物质、核废料及地壳中生存;从寿命上看,细菌的休眠期可以长达几万年甚至几百万年。早在动物出现之前的几十亿年,地球上就已经存在大量的细菌,而且很可能在未来我们人类消亡之后的很长时间内,细菌还能存活下去。基于这些因素,在生命体出现以后,很可能在一段时间内,那些能够灵活、准确地处理信息的生物大行其道(但只是限于复杂程度与细菌相当的生物)。
这样就产生了一个问题,动物最初是怎么出现的?一种解释是,动物的出现和发展是个意外。经过很长时间的进化探索,一旦条件成熟,生存的契机就会出现,或者说产生了“生物想法”(biological ideas)。所以,动物是生命体发展过程中一个偶然环节。当然,人类是一种奇妙无比的生物,拥有丰富的意识和非凡的才智。但是,人类聪明与否与进化是否成功是两回事。例如,人类才智的发挥似乎导致了一种失控状态,威胁到我们自身的生存。我们的集体智慧产生了一系列破坏性的后果,其中之一就是大量二氧化碳的排放造成的后果。
撇开这些威胁我们生存的不利因素不谈,先来探讨一下动物所利用的契机。细菌对信息(不只是DNA上的信息,还包括整个细胞内的信息)进行编码,很快形成和改变“想法”。细菌主要通过蛋白质表现“想法”,另一种更为有效的方式是在DNA和蛋白质之间建立许多运算链接。这个处理系统虽然很独特,但存在很大局限性:只能一步一步获取最基本的信息。如果运算能力的增强符合进化的要求,那么要怎样做才能处理更多的信息呢?一个原始的例子是:细菌相互间联结在一起来表现有关食物的信息。按照逻辑推理,下一步应该突破细胞的范围。
多细胞生物的情况又如何呢?多细胞生物的每种细胞都有特定的功能,而无数神经细胞构成了大脑。按照一种进化“假说”,快速学习和储存更多的信息,在某种程度上可以弥补维持大脑运作所需投入的更多时间及资源。
非动物类生物(包括聪明绝顶的细菌)要花几代的时间,通过自然选择和DNA对周围环境的一些基本变化进行编码。然而,即使是结构最简单的动物,只需要几秒钟就能从环境中学到大量的知识。动物轻易就能掌握有关环境的一些复杂的特性,而仅仅靠DNA可能无法理解。由于非动物类生物处理信息的能力有限,如果碰到威胁,可能会导致个体甚至是整个物种的灭亡;而动物碰到同样的威胁,甚至不会受到任何伤害。
如果进化主要是“想法”之间的竞争,而最终获胜的是最佳的想法,那么从某种意义上说,动物为了获得更多生存机会,会紧紧抓住另一种进化形式,即内在进化。
因此,所有生物在进化过程中都要经历基因假说-测试阶段。有机体的“概念”正确与否通常由环境直接反馈,那些理想的“概念”被选中,遗传给后代,而那些糟糕的“概念”则不再存在。如果是复杂类型的细菌,有小部分重要的反馈来自蛋白质这一中间介质——蛋白质能快速地反映环境的粗略特征。
对动物来说,处理关乎生存与繁衍的重要“信念”需要有一个缓冲物。动物收到的反馈来自环境,但大部分反馈不需要经过DNA,因为DNA只能改变那些储存在大脑细胞内的“想法”。通过运动的方式,动物能够直接与环境产生互动,快速有效地检测“信念”正确与否。一个动物在一生中能产生无数的“想法”,其中一个重要的原因是,错误的“想法”不会威胁到动物的生命。
而且,动物的精神世界越复杂,就越能够细致地反映外在世界。动物结构复杂的大脑能够进行大部分的环境反馈,而这些环境反馈是改变“信念”(不管这些“信念”是储存在基因里还是神经细胞中)所必需的。
有着复杂大脑的动物,不需要动一下就能检测许多互相竞争的想法。举例来说,我因为思考意识科学问题,到半夜都无法入眠,这时我感到饥饿,很想吃腰果。开始我想去厨房看看,但是马上想到前几天大扫除清理了很多吃的东西。然后想到去超市买,但平常去的那家超市9点以后就关门了。我只能去24小时超市(开车要15分钟),或者去1公里外的加油站。我躺在床上就能想出一个最好的办法,去买几里外的、现在急需的、很容易让人发胖的零食。从某种进化的角度看,做到这点是不可思议的。
这说明内在进化的形式已经产生,而且动物智力水平越高,这种内在进化表现得越明显。人类大脑很像一个内在进化的世界[1]。我们的大脑能充分、准确地反映世界,我们几乎不需要浪费一点体力,就能产生各种想法以及做大量选择。这种方式还很安全,我们思考各种选择时不用冒任何风险,不会发生下面的任一情况:或者在基因优劣的竞争中失败而无法生存,或者因为一些失误而造成身体上的损伤。这种方式似乎与本章开头提到的原初生命的“想法”大相径庭。其实,两者并非看起来那样不相关。两者都属于相互关联的进化步骤,都是建立在一个理论基础上,即高效的信息处理占有优势。