三、数据网络效应
当产品的价值随数据增多而提升,并且当产品的使用增多会产生数据时,就有了数据网络效应。这是第三大类的网络效应。
数据网络内每个节点(用户)都为中心数据库提供有用的数据。随着聚合数据的不断增长,数据对每一位用户的价值也随之提高。
数据网络效应往往比很多人(尤其是风投家)认为的要弱:拥有更多数据未必就能转化为价值,而收集到更多的有用数据也不是一直都是易事,哪怕数据是产品的核心。
数据可以用不同的方式增加产品价值。如果数据的确是产品给用户带来好处的关键,则该产品的数据网络效应有可能就非常强大。如果数据只是产品的边缘属性,则数据网络效应就不太重要了。当Netflix向你推荐节目时,算法推荐的基础时用户的历史浏览数据。不过Netflix的发现功能只是边缘性的功能;去真正价值来自于它的电视、电源及纪录片节目存量。所以Netflix仅存在边际的数据网络效应。
类似地,产品使用与收集到的有用的新数据量之间的关系也会逐渐逼近。Yelp具备数据网络效应,因为对数量越来越大的饭店的点评量越多可以让产品越有价值。但是其网络效应会因为只有一小部分用户产生这些数据而受到削弱;大家更多是从Yelp数据库去读东西而不会在上面写东西。
与此同时,Yelp也是数据网络效应一个共同弱点的很好例子。其数据网络效应是渐近性的。第5条点评增加的价值要比第30条多得多。点评条数超过一定限度之后,对饭店更多的点评并不能替你(用户)增加价值。(另一方面,点评的幅度就很有用并且能巩固网络效应,这就是为什么Yelp仍然如此流行的原因。)
如果产品跟增加使用和更多有用的数据生成之间没有关系的话,就不会有网络效应的产生;那只不过是规模效应罢了。可以认为Experian这样的信用报告机构具有规模效应,因为即便更多的数据令其信用评分更有价值(比如更加精确了),消费者对其产品的使用并不会随着数据量的增加而自然增长。
数据网络效应很容易会跟来自规模的数据优势混淆。大公司无疑拥有更多的数据。问题是,那些数据是不是为客户/用户创造了有意义的价值?如果是的话,增加使用会不会导致更多的有用数据?
具备强劲数据网络效应的服务有一个好例子,那就是Waze。每个人不仅在Waze上消费数据,而且也贡献有用的数据,但因为数据是在实时消费的,数据集需要不断更新。所以网络越大,在任何时候任何一条道路上的数据都会更加精确。更多的数据会继续几乎无限期地产生价值,所以相对于其他几乎任何我们能想到的服务来说,Waze的数据网络效应都不大算是渐近型的。
数据网络效应可能是最复杂的一种网络效应类别。有很多不同的数据网络效应,因为数据的使用方式有很多。这个有待未来再细讲。
属性:
数据是产品价值的核心
更多使用需要产生更多有用的数据并收集起来
通常达到一定的数据量阈值后效应渐近
不同于数据的规模效应
例子:
Google、IMDB、Waze、Yelp!Amazon