• 精选
  • 会员

能带来生存优势的突变就具有保留价值,自然选择则是新性状的保留者

2024年12月26日  来源:适者降临 作者:安德烈亚斯·瓦格纳 提供人:It8933......

发育稳态足以维持基因型网络的存在,但是仅有基因型网络对进化而言还远远不够。原因在于,进化的发生必须要同时满足两个看起来相互矛盾的条件。进化需要生物同时具有保守性和可变性。就像当初那些企图横渡大西洋的先锋飞行员一样,他们也需要参考莱特兄弟的飞机原型:他们要的是能够完成这项壮举的新飞行器,但是他们同样需要学习如何让不够完美的旧飞行器在天上翱翔,直到新一代飞行器取而代之。同样的道理在自然界也适用,大自然需要保证生物的存活,同时寻求新的性状。基因型网络为探索新性状提供了便利,但是网络本身对保留已有的性状并没有什么助益。

我们需要再次强调这一点,因为基因型网络的发现让我们在惊喜兴奋之余,也容易冲昏我们的头脑,忘记自然选择所扮演的重要角色。自然选择的作用体现在它的保守性,它是进化的记忆,保留了所有值得保留的改进,无论改进多么微不足道,假以时日,这些微小的改变终会积流成河,聚木成林。我这样说也是有据可依的。达尔文在他的物种起源中有一段关于眼睛的描写,眼睛无疑是生物进化史上最出色的成果之一。“眼球精密的结构是无与伦比的,它能够调节焦距以适应不同距离,能够调节进出的光量,能够纠正色差和球面像差,我必须坦陈,造就这一切的自然选择对我而言简直不可思议。”

当光线穿过我们的眼球,眼球中的棱镜系统就把外面的世界清晰地投射到了可以感应光线的视网膜上。这听起来简单,不过在这个过程中,眼球必须以精密的角度改变光线前进的路线。对光进行折射可不仅仅是改变晶状体的形状就能做到的,构成晶状体本身的材料常常被忽略,而它对成像而言至关重要。晶状体的组成成分由来已久,它的出现依赖于新的调控通路。

向水的表面投射一束光线,你能够在水面与空气交界的地方看到光线的弯折。如果在水里溶入糖,那么光线弯折的角度会变得更小[20]。溶解的糖越多,折角越小。食品工业正是利用这个原理检测酒、软饮和果汁中的糖含量。我们的眼睛也利用相同的原理对光线进行折射,区别在于眼睛利用的是蛋白质而不是糖。这种蛋白质(晶状体蛋白)在晶状体中有极高的浓度,使得晶状体对光线具有极强的折射能力。

晶状体蛋白在光线折射方面的作用惊人的出色,很容易让人以为它的存在是为晶状体的形成而量身定制的。然而,事实并非如此。许多晶状体蛋白都是参与代谢的酶,除了数量上相对较少以外,它们和身体中参与其他生化反应的酶相比,并没有明显的特殊之处。不同的生物利用不同的酶作为晶状体的蛋白成分。这些酶与其他蛋白质的一个不同在于,它们不容易凝结成块,哪怕在眼球内以高浓度的形式聚集也不会轻易析出。

眼球利用的蛋白质本质上是一种酶,但它不要求这些蛋白质能够像乙醇酶一样分解酒精,只因为它们是透明的,就像你找了一块破砖头做书立不过是因为它碰巧很沉而已。此外,晶状体蛋白往往非常稳定坚韧,人类眼球中构成晶状体的晶体蛋白往往将伴随一个人的一生,从出生直到去世。但是有的时候晶体蛋白也会出问题并凝结析出,使晶状体呈现乳白色。这就是我们所说的白内障,白内障最终必然致盲的结果人尽皆知。

达尔文本人无缘得知任何关于蛋白质化学领域的知识,但是他做出了大胆的假设,他认为脊椎动物美丽的眼睛,以及眼睛内精妙复杂的晶状体,都是一系列微小进化积累的最终产物,这一洞见已被今天的我们所证实。早在我们的祖先选择不易析出的代谢蛋白作为晶体蛋白之前,它们的祖先(某些蠕虫或是海星)就已经开始利用感光细胞了,这些感光细胞的作用可以帮助它们找到阴影下的藏身之地以躲避掠食者。

数百万年之后,感光细胞逐渐聚集在一个浅浅的凹陷内,形成视杯(eyecups)。视杯能够比感光细胞更好地感受光源的方向,视杯进一步凹陷就成了视坑(pit eyes),视坑对于光源的感应已经相当出色。再进一步,视坑逐渐进化成视孔(pinhole),视孔终于能够真正意义上地进行成像了。到此,眼球的形成只差一种能够折光的高浓度透明组织就完成了,比如晶状体蛋白。此时,距离晶状体的出现只有一步之遥。我们最终在眼睛的结构里看到了能够移动和变形的晶状体,因为有了它,眼球才能呈现清晰的物像。

每一个小小的改变和进步都值得被保留,而自然选择的确也做到了。之所以如此肯定,是因为许多动物身上依旧保留有这些改变:某些扁形动物中还保留着视杯,蜗牛身上仍旧存在视坑,而鹦鹉螺——一种贝壳体分为许多小室的乌贼近亲,身上则有视孔,而水母等动物身上则具有相对简单的原始晶状体。

在气势宏伟的中世纪大教堂中,教堂里高耸的尖顶和巨石雕琢的厚重圆柱都会配以无比精致的装饰,高高的拱形屋顶往往超出了我们的视线范围,掩映在半明半暗之中。而由所有这些细节构成的最终成品,如果没有人告诉你它们是一块砖一块砖修筑起来的,你也许很难相信世间竟能有此等杰作。而我们的眼睛也是这样的杰作。

分子进化的过程亦是如此。北极鳕鱼体内的抗冻蛋白可不是像雅典娜[21]那样在一夜之间就形成的。北极鳕鱼祖先体内的某种蛋白质以一次一个氨基酸的速度缓慢积累着有益的变异,每次变异只要把体内液体的凝固点降低仅仅0.1摄氏度,其后代的生活范围就可以向外扩展数公里。更大的生存空间也意味着数量更多和种类更丰富的食物供给。只要是能带来生存优势的突变就具有保留价值,而一系列类似变异的积累则把鳕鱼的生存极限延伸到了极度低温的疆域里。基因型网络对于寻找新性状至关重要,而自然选择则是新性状的保留者。

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000