• 精选
  • 会员

60人!归纳推理揭开的谜底

2024年12月26日  来源:复杂经济学:经济思想的新框架 作者:布莱恩·阿瑟 提供人:It8933......

归纳推理(Inductive Reasoning) 在某些决策环境中,我们先形成各种各样的工作假设,并根据其中最可信的那个工作假设采取行动,如果不再有效,那么就用新的工作假设取而代之。

接下来,我将构造一个问题,以它为例来说明何为归纳推理,并阐述如何对归纳推理建模。假设现有N个人,每个人独立决定要不要在某个晚上去酒吧消遣。为了更具体起见,我们不妨假设N为100。酒吧的空间是有限的,如果酒吧里不太拥挤,那么来酒吧的人就可以度过一个愉快的夜晚。具体地说,如果这100个可能去酒吧的人当中,只有不到60个人真的去了,那么去的那些人就可以度过一个愉快的夜晚。没有人能够提前知道当晚会来酒吧的确切人数。因此,如果一个人或行为主体预期,当晚去酒吧的人小于60个,那么他就会去(他认为值得一去);如果他预期去酒吧的人会超过60人,那么他就宁愿待在家里。这些人在做出决策时,不会受自己以前有没有去过酒吧的经验的影响,同时不同行为主体之间也不存在共谋或事先的沟通。唯一可用的信息,是过去几个星期以来出现在酒吧中的人数。这个问题的灵感,来自圣塔菲研究所旁边一家名为“爱尔法鲁”的酒吧。这家酒吧每周四晚上都有爱尔兰音乐会。不过,很多类似的场所中都会出现同样的问题,比如读者可以想象一下你去吃午餐的餐厅,你也许希望它安静点,但是它可能很拥挤。事实上,任何“公地问题”或“协调问题”,只要涉及数量上的限制都是一样的。在这个问题中,我们感兴趣的是,每个星期来酒吧的人数变化的动力学机制。

不难看出,这个问题有两个有趣的特点。首先,如果有一个“显而易见”的模型,所有行为主体都能够根据这个模型,预测来到酒吧的人数并在此基础上决定去不去酒吧,那么通过演绎推理就能够求解了。但是,这里的问题显然不属于这种情况。给定最近来酒吧的人数,可以设想一大批看上去同样合理、同样有根据的模型。因此,也就无法得知其他行为主体可能选择哪个模型,这样某个“有参照意义”的行为主体,也就不能以某种确定的方式给自己选定一个模型。这里不存在演绎理性解,即没有“正确的”预期模型。从行为主体自身的角度来看,这里的问题是不明确的,因此他们被推进了一个归纳的世界。其次,在这里令人烦恼的是,任何一个共同的预期都会被打破。如果所有人都预测很少有人会去,那么所有人都会去,而这个结果将证明这种信念是无效的。同样地,如果所有人都预测大多数人会去,那么将没有人会去,这种信念同样被证伪。[3]由此,行为主体们的预期将被迫变得有所不同。

行文至此,我想请读者暂且先停下来思考一下:随着时间的推移,来到酒吧的人的数量(为了行文方便,以下简称为“到场人数”)会如何动态地变化。它会不会收敛?如果会收敛,那么为什么收敛?或者,它会不会陷入混沌呢?我们又该怎样进行预测?

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000