• 精选
  • 会员
经济思想史-复杂经济学:经济思想的新框架-理解“涌现秩序”-了不起的阿瑟-布莱恩·阿瑟访谈录+引言 复杂性思维造就复杂经济学-结缘圣塔菲研究所-“人工股票市场”项目-“爱尔法鲁酒吧”问题-技术是如何进化的-复杂经济学的诞生-01 什么是复杂经济学 经济思想的新框架-经济与复杂性-内生的非均衡-建立非均衡状态下的理论-三种典型的非均衡现象-正反馈-经济的形成-泡沫和崩溃是市场的基本趋势-一门基于“动词”的科学+02 “爱尔法鲁酒吧”问题 归纳推理和有限理性-归纳思维-对归纳推理建模-60人!归纳推理揭开的谜底-动态模型+03 圣塔菲人工股票市场 内生预期的资产定价-市场是理性的吗-为什么归纳推理是有效的-归纳推理形成预期均衡-对预期形成建模-两种市场体制的涌现-理性预期体制-是普遍规律,还是人为假象+04 收益递增和路径依赖 技术竞争、正反馈及历史事件导致的锁定-简单模型:仅存在两种技术-三种收益体制的配置-三种收益体制的特性-模型的扩展-采用者类型连续时的非线性收益递增+05 经济中的过程与涌现 “复杂性视角”下的经济系统-复杂经济的6大特征-“复杂性视角”带来的三大影响-三个新热点+06 再好的经济和社会系统也会被“玩弄” “压力测试”是防范操控行为的良方-“剥削”的4种类型-“压力测试”的作用-用“涌现”发现新行为-补上“失败模式反思”这一课+07 技术究竟是如何进化的 在实验室中观察到的组合进化-电路设计的进化-新技术的涌现-技术的扩展-创造性毁灭的风潮+08 技术进化所引发的经济进化 经济是从它的技术中涌现出来的-经济就是技术的一种表达-结构性变化-解决方案带来的新问题+09 复杂性的进化 是越来越复杂,还是随时可能坍塌-机制1:协同进化多样性的增加-机制2:结构深化-机制3:捕获软件+10 认知科学 打开经济学黑箱的金钥匙-心智是什么-心智是快速的模式完成器-认知过程建模-理论很重要,经验也很重要+11 确定性的终结 不确定性是经济世界的主旋律-经济是确定的吗-“起飞时段选择”的困惑-“资产定价”的困惑-现实世界是这样的+结语 复杂的经济需要复杂经济学-复杂经济学是一种超越均衡的经济理论-“归纳理性”的胜利-经济世界怎能少了“泡沫”和“崩溃”-《复杂经济学:经济思想的新框架》注释-《复杂经济学:经济思想的新框架》译者后记-附录:未来的经济学原则

建立非均衡状态下的理论

2024年12月26日 字数:3879 来源:复杂经济学:经济思想的新框架 作者:布莱恩·阿瑟 提供人:It8933......

面对内生的非均衡,我们应该怎么办呢?如果庞大的经济一直随着行为主体的活动处于“沸腾”之中,借用熊彼特的一句话,那么我们要处理的似乎就是一种“无法纳入分析范围的混沌”。面对这个难题,以往的标准经济学的态度可以用两个成语来描述:束手无策和退避三舍。但是,如果我们决定不步标准经济学的后尘,并且我们坚定自己的立场,认真对待非均衡问题,那么我们必须怎样做才能继续向前呢?我们能够得出一些有用的结果吗?我们会有什么样的发现呢?当然,首先要回答的一个问题是,在非均衡状态下进行理论化建模意味着什么。

有一种观点认为,经济的很多组成部分可以被视为处于近乎均衡的状态,对于它们,标准理论仍然是适用的。同时,对于经济的其他组成部分,则可以将它们视为处于暂时偏离了最具吸引力状态的状态,仍然可以研究它们向这个最具吸引力的状态收敛。但是,这种观点仍然把经济当成了一台高度平衡、能够自动调整的机器,认为它只会暂时偏离均衡状态。固守这种观点,只会使我们既不能了解经济在均衡状态之外的表现,也不能刻画经济在非均衡状态下极具创造力的一面。

研究非均衡经济的一种更好的方法是,研究经济的各种“当前状况”。正是在这些当前状况中,形成了决定未来事件或事物的那些条件。经济是一个系统,而且这个系统中的各个元素,都会根据“当前状况”来不断更新自己的行为。[9]如果采用另外一种更加正式的说法,我们可以说,经济就是一种持续的“计算”(computation)。这是一种极其庞大的分布式计算,也是一种大规模的并行计算,而且这种计算是随机的。[10]这样一来,经济就可以视为一个以一系列事件为序不断进化的系统。从这个角度来看,经济是有算法规则的。

虽然以这种方式看待经济有一个风险,有人可能会说,这只是为了迎合科学的当代潮流。但是基于这种思想,我可以阐明一个很重要的观点。让我们暂且假设我们掌握了经济的算法,或者更进一步地说,假设自己就是拉普拉斯(Laplace)或“上帝”[11]那样的人,在我们掌握的经济或感兴趣的某个经济领域中,“采取”下一步行动时,所要遵循的数量庞大但总数有限的各种具体机制。有关计算的一个基本定理告诉我们,一般来说,如果我们随机选择了某种算法,是没有方法,或者说没有系统的解析方法能够提前算出该算法或电脑程序是否会终止,而不是永远持续或循环下去的。因为我们只能规定,如果某种算法的输出,符合一组特定的数学条件或得到了某个给定的“解”(solution)就终止计算,那么一般来说,我们并不能确定这种算法是否合适。总之,没有任何解析方法能够提前确定某种给定的算法是否合适。[12]我们所能做的,无非是按照算法计算下去,然后看看它会带来什么结果。如果某个算法足够简单,我们还是经常可以观察到,它会带来某种特定的结果。但是,当我们不能决定算法的结果时,算法就不必过于复杂了。 

非均衡系统(Nonequilibrium System) 一些经济学家认为,非均衡状态才是经济的自然状态,经济始终处于变化当中。这不仅是因为经济总是面临着外部冲击或外界影响,而且还因为非均衡本身就是产生于经济内部的。

因此,我们必须更加谨慎一些。对于一个高度互联的体系来说,均衡或闭合解(closed-form solution)都不是缺省结果。而且,如果均衡或闭合解是确实存在的,那么必须解释它们存在的理由。从计算的角度思考这些系统,并不意味着我们有意回避解析分析,严格地说,解析分析是非常必要的。我们经常要对非均衡系统的定性特点进行很多非常有用的预分析,以便更好地理解它们背后的机制。然而,在研究非均衡系统的结果时,唯一准确的方法仍然是计算。

现实经济背后的算法并不是随机选择的,而是高度结构化的。因此,一种可能出现的情况是,现实经济的“计算”总是会得到非常简单的结果;另一种同样可能出现的情况是,现实经济的计算也总是无序的、无定形的。在我们所研究的经济领域内,通常不会出现这两种情况。尤其是在有强大的抗衡力量发挥作用的情况下,我们经常可以观察到一些大型结构,即一些与均衡不严格对应的吸引域。在这些吸引域内或当不存在吸引域时,我们也能观察到某些机制,它们会造成某些不是随机产生或消亡的现象、子模式或子结构。对此,我们可以用物理学中研究的太阳来进行类比。从远处看,太阳是一个由气体组成的巨大球体,而且是一个处于均衡状态之下的球体。但是在这个“均衡”的内部,还存在着一些强大的机制,它们引起了许多动态现象,如巨大的磁环和磁拱、冕洞、X射线耀斑,以及最高时速可达7.2×106千米的等离子射线大规模爆发等。太阳这个巨型“气球”确实呈现为一个松散的球体,但是它从来都没有处于均衡状态。相反,它一直处于不断的运动之中,这种运动源于更早之前的扰动,而且它破坏了达到均衡的可能性。这些现象都是局部的,并且能够发生在各种维度上。再者,这些现象都是短暂的,它们的出现、消失和互动,从时间上看都是相当随机的。

我们在经济中也经常可以观察到类似的情况。要建立非均衡状态的理论,就是要揭示那些起作用的大吸引子(如果它们真的存在的话),同时还要研究其他子结构或现象,这些子结构或现象可能因大吸引子的特点和行为而出现。我们可以利用精心设计的计算机实验来做到这一点,通常是对结果进行统计分析,从而将各种现象及导致这些现象的机制识别出来。在很多情况下,我们可以为某种现象建立一个较简单的“玩具模型”(toy model),该模型应该能够刻画该现象的基本特征,并允许我们利用数学理论或随机理论来研究这种现象。但是要记住,研究的目标并不一定是要给出确定的方程式或达到某些必要条件,相反,正如所有的理论一样,我们的目标是获得一般性观点。

接下来,让我们通过一个真实的、利用计算机完成的非均衡研究,来将上述要点融合起来。这是一个经典案例。

1991年,克里斯蒂安·林格伦(Kristian Lindgren)设计了一个在计算机上进行的锦标赛。在这个锦标赛中,各种策略随机配对,进行重复的囚徒困境博弈,以便分出高下。在这里,我们不必考虑囚徒困境博弈的细节,而是直接把它视为一个有一系列指定策略的简单博弈。所谓博弈策略,就是指给定对手最近采取的行动,另一方应该如何行动。如果某个策略带来的结果很好,那么就重复该策略并进行策略突变;如果某个策略带来的结果很糟糕,那么该策略就会被移除。林格伦允许博弈参与者拥有对另一方和自身最近采取的行动的深层记忆,从而可以“深化”策略。这样一来,用我们在这里采用的术语,就可以说这些策略在“探索”策略空间。如果策略不是很成功,那么就可以进行改变和调整。林格伦发现,在锦标赛开始之初,简单策略,如“一报还一报”策略是占优策略,但是过了一段时间后,“更深层”策略出现并战胜了原来的简单策略。随着时间的推移,又出现了能够“剥削”以前更深层策略的更加深层的策略,这个过程是在相对稳定期间和动态不稳定期间的相互交替中完成的(如图1-1所示)。

 

图1-1 林格伦计算机锦标赛中的策略

图中横轴表示时间(期数),纵轴表示使用某个特定策略的次数,标号表示策略的记忆深度。

这个锦标赛的动力学机制十分简单,因此林格伦可以将它们用一些随机方程式描述出来。但是,这些随机方程式不能说明全部情况,我们必须通过计算来搞清楚到底会发生什么。在计算过程中,我们发现涌现出来的是一个生态,即一个“策略生态”。每种策略都试图利用某个环境,在该环境下求得生存,而且该环境就是由该策略本身以及其他策略在努力利用环境、寻得生存时所创造的。这个生态就是一个微型的“生物圈”,在这个生物圈中,各种新物种(即策略)不断涌现出来,在现有各物种所创造的环境中探索求生,如果遭到失败,这些失败的策略就无法生存。这里需要提请读者注意的是,这个生物圈中当然也有进化,但这种进化并不是从外部引入的,而是在各种策略为生存而竞争的自然趋势中发展出来的。这种观点在复杂经济学这种类型的经济学中是很常见的。复杂经济学中的“解”,是一个由相互竞争的多种策略、行为或信念组成的生态系统。这个生态系统是不断变化的,它拥有自己的特性,对它可以进行定性研究和统计研究。[13]

在林格伦的这项研究中,每一轮计算的结果都各不相同。不过,在经过多轮计算之后,终于出现了一个进化稳定策略,那是一个复杂的策略,它依赖于对过去四期行为的记忆。而且,在其他各轮锦标赛中,这个系统仍然持续不断进化。在某些轮次中,我们观察到复杂的策略很快就出现了,而在另外一些轮次中,复杂策略则很迟才出现。尽管如此,这个锦标赛中还是存在一些不变的东西,如策略之间的共存现象、新策略的开发、自发涌现的互利主义、忽然发生的崩溃、静止状态和不稳定状态之间的交替变化,等等。这些情况与古动物学上的图景何其相似!

我在这里将林格伦这项研究称为非均衡经济学研究的一个样板。有的读者可能会心生疑虑:对一个在计算机上进行的研究,怎么可以算是经济学研究呢?这种研究与建立非均衡状态下的经济学理论,有什么关系呢?这看上去一点也不“数学”。对于这种疑问,我的回答是理论绝非全由数学构成。数学无非是一种技术、一个工具而已,尽管它看上去比较精确、比较复杂。理论不同于数学,理论就在于发现、理解并解释世界中存在的现象。数学只是为这个理论化过程提供便利,当然这是一个很大的便利。重要的是,计算也能起到同样的作用。

当然,计算与数学也有不同。利用数学模型时,我们可以通过方程一步一步地论证,并找到问题的解必须满足的条件,计算却不能做到这些。[14]计算也有自己的长处。它的长处不但能补偿它的不足,还可以让我们看到均衡数学无法看到的现象。通过计算,我们能在不同的条件下重新得到结果,在结构出现或没有出现时进行探索,确定潜在的深层机制,层层递进地简化现象,提取现象的根本信息。换句话说,计算是思想的助手,在这一点上,它与经济学早期发展中所运用的其他辅助工具没有什么区别。线性代数、微积分、统计学、拓扑学、随机过程等辅助工具,在当时都曾经受到过抵制。计算机已经成了研究经济学的一个实验室,如果能够熟练地、有效地利用计算机,它可以成为一个强有力的理论创造器。[15]

所有这些都指向一个新的前进方向,即以非均衡视角来研究经济的方向。我们可以将经济或我们感兴趣的部分经济领域视为行为主体的策略、预测和行为不断变化的结果。对于这些经济领域,以及经济学中的一些经典问题,如代际转移支付、资产定价、国际贸易、金融交易、银行业务等,我们都可以通过建立模型来研究。只不过在我们的模型中,要研究的不只是行为主体在均衡状态下做出的应对,而是行为主体在所有情况下做出的应对。我们的模型有时也可以借助于数学来进行分析,但是许多时候只能借助于计算,当然有时需要同时借助于这两者。我们不仅希望找到均衡的条件,我们还想理解结果的形成以及结果的进一步发展,解释经济中出现的所有动态现象。

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000