我们都明白自己生存的世界并不是由经济人组成的,我们身边都是实实在在的人。经济学家也都是人,所以他们也知道自己生存的世界不是经济人的世界。“现代经济学之父”亚当·斯密曾明确承认这一事实,在撰写《国富论》(The Wealth of Nations)这部杰作之前,他还写了一本关于人类“情感”(passions,与“理智”相对) 的书。然而“情感”这个词从未在任何经济学教科书中出现。经济人没有情感,他们只是寻求最优化选择的冷血之人,想想《星际迷航》中的斯波克先生吧。
然而,以经济人为主体的经济行为模型却大行其道,并作为经济学的核心将其推向影响力的巅峰。多年来,尽管对这些模型的批评声不绝于耳,但总是因为理由牵强或实证证据不充分而未受到重视。不过,随着研究与人们的利害关系间的联系越发紧密,那些批评逐渐得到了验证。我们很容易对考试分数的故事不予理会,但是在存钱养老、选择抵押贷款、投资股票等利益攸关的领域,探讨糟糕选择的研究就没那么容易被搁置一旁了。我们也不可能对1987年10月19日之后金融市场的暴涨、泡沫与崩溃置若罔闻。那一天,在没有任何实质性负面消息的情况下,全球股市暴跌超过20%,随后便是科技股的泡沫破裂与崩盘,很快又是房地产泡沫的破裂,继而引发了全球经济危机。
我们不应该再找借口,而应该丰富经济学的研究方法,将人的存在和相关性考虑在内。值得高兴的是,我们无须抛弃已经掌握的经济学和市场知识。假设所有人都是理性经济人的理论,我们也不必弃之不理,它可以作为研究的起点,为建立更符合实际情况的模型奠定基础。在某些特定场合,比如人们要解决的问题十分简单,抑或经济活动主体的专业技能很高,由这些理论得出的结果与实际情况相差不大。但是,正如我们在下文中将要看到的,这些只是例外情况,而非常态。
经济学家的主要工作就是收集和分析市场数据,他们的研究通常十分谨慎,而且需要深厚的统计学知识。更重要的是,大多数研究并不是建立在最优化的基础之上。过去25年中出现了两种研究工具,极大地提高了经济学家认识世界的能力。第一种工具是随机控制实验,长期以来它一直被用于医学等科学领域,最典型的实验就是研究一些人接受了某种利益“处理”后会发生什么。第二种工具是自然实验(比如有些人加入了某个项目而其他人没有)或是巧妙的计量经济学方法。即使在没有特意设计某种情境的情况下,计量经济学方法也能发现处理因素的影响。这些新工具催生了大量有关社会重要问题的研究。研究中的处理因素包括:接受更多的教育、小班授课、安排更好的老师、提供咨询和管理服务、帮助就业、判刑、搬到更贫困的地区、接受医疗补助计划中的健康保险等。这些研究表明,即使不用最优化模型,我们也可以从很多角度认识世界。有些研究提供了可信的证据,可以检测最优化模型是否与人们的真实反应一致。
对于大多数经济学理论来说,“经济活动的所有主体都将追求最优化”并不是一条重要的假设,即使研究对象不是专家也是如此。例如,如果化肥价格下降,农民会使用更多的化肥,这一预测是很稳妥的,虽然很多农民对市场价格变化的反应不会那么快。这条预测出错的概率之所以很小,是因为其本身就是不精确的:预测的只是方向而非结果。这就相当于预测苹果脱离树枝后,会向下掉而非向上升一样,这条预测就其本身而言是正确无误的,但却不是确切的万有引力定律。
当经济学家所做的预测必须十分精确,且其判断依据是所有人都是理性的经济人时,他就会陷入麻烦。让我们回到农民使用化肥的那个例子,假设科学家发现使用比平时的剂量多或者少一些的化肥,农民将会获得更多的收益。如果所有人知道正确信息后都会照做,就不需要合适的政策法令,只要将信息免费公开就行了。将研究结果发表出来,让农民免费阅读,剩下的就交给市场吧。
除非所有农民都是理性的经济人,否则这将是一个糟糕的建议。也许跨国食品公司会对最新的研究成果快速做出反应,但是印度或非洲的农民会有什么举动呢?
同样,如果你认为所有人都会像经济人一样,会为养老存储适当额度的资金,你就会得出这样的结论:没有必要帮助人们存钱(比如制订养老金计划)。这样一来,你就会错过让很多人获益的机会。如果你认为金融泡沫从理论上讲是不可能出现的,而你又是央行行长,那么你会犯下严重的错误,正如艾伦·格林斯潘所承认的那样,在他身上就发生过类似的事情。
我们还可以继续发明描述虚拟经济人行为的抽象模型,但是我们必须停止假设这些模型会提供关于人类行为的准确描述,必须不再根据这些有缺陷的分析做出决策。同时,我们必须开始关注那些看似无关的因素(supposedly irrelevant factors),这些因素被简称为SIFs。
想改变人们早餐吃什么的想法不太容易,更不用说想改变他们对一生都试图解决的问题的看法了。多年来,很多经济学家都强烈反对将模型建立在对人类行为的精确描述上。但是,一大群具有创新精神的年轻经济学家已然涌现,他们愿意冒险,摆脱传统的经济学研究方法,所以,丰富经济学理论的梦想正逐渐变成现实。这一新兴领域被称为“行为经济学”,它与经济学并非分属两门学科,而只是融会了大量心理学和其他社会科学内容的经济学分支。
将人的因素加入经济学理论中,主要目的是提高这些理论的预测准确性。同时,它还有另外一个好处:比起传统经济学,行为经济学更有趣、更好玩,这是一门不会让人感到沉闷的科学。
作为经济学的一个分支,行为经济学正在不断发展,在全球各地的高等学府里几乎都能找到研究这门学科的人。最近,行为经济学家与行为科学家也开始在客观决策领域占有一席之地。2010年,英国政府建立“行为研究团队”。现在,其他国家也纷纷效仿英国,希望在制定公共政策时,将其他社会科学的研究成果考虑在内。商界也迎头赶上,人们发现要想打造成功的企业,深入了解人类行为与充分理解财务报表和运营管理同样重要。毕竟,公司是由人经营的,员工和顾客也都是人。
本书讲述的就是这一切是如何发生的,至少是从我的观感出发。虽然其中涉及的研究并不都是我做的——你知道,我是很懒的,但这门学科自萌芽之日起我就一直参与其中。正如特沃斯基留给他儿子的那几句话,你将会读到很多故事,但我的主要目的是讲述故事发生的原因,解释我们可以从中学到些什么。当然,采用新方法的人与捍卫传统经济学研究方法的人会发生很多争吵,这些争吵也并不总是有趣的。但是,这正像一次糟糕的旅行,经历过后,它可以成为很好的故事题材,这些争吵也让行为经济学变得越来越强大。
和所有故事一样,本书的故事也并不是线性发展的——不是一件事之后自然而然地发生了另一件。很多观点都在不同时期以不同的速度形成,所以,本书既按时间顺序展开,又分为不同的主题。这里做个简要介绍,本书将从行为经济学的发轫讲起,回溯到我读研究生的时候,那时我整理了很多关于奇怪行为的例子,它们似乎并不符合我们在课堂上所学的经济学模型。本书的第一部分主要针对行为经济学产生的最初几年,讲述了很多质疑这门学科价值的经济学家所发起的挑战。然后,我会将重点放在研究生涯的前15年中我自己最感兴趣的一系列话题上:心理账户、自我控制、公平和金融。我的目的是阐述我和我的同事在这个过程中的收获,希望通过我们得出的结论,帮助大家了解他人的行为。同时,我们还会提供一些有用的方法,教你如何改变人们思考问题的方式,尤其是在人们竭力维持现状的时候。随后,我会转向近些年的研究成果,从纽约市出租车司机的行为到美国国家橄榄球联盟如何遴选球员,再到奖金很高的比赛类电视节目。最后,我会讲到伦敦唐宁街10号,那里有一系列令人兴奋的新的挑战和机会正在浮出水面。
对于本书,我唯一的阅读建议是:当你觉得不再有意思时,就不要再往下读了,否则,就是所谓的“错误”的行为了。
[1]确实有一位经济学家发出警告,认为房价的增长速度令人担忧。他就是我的同事、行为经济学家罗伯特·席勒。