• 精选
  • 会员

4/推荐算法-Feed时代

2019年11月27日  来源:金叶宸 作者: 提供人:tanhao15......

现在的我们都知道,新的大杀器就是:推荐算法。不过应该出乎很多人的意料之外,这个大杀器其实相对它大杀四方的时代,并不能算多新的技术

所谓推荐算法这个东西,本质上就是“向用户推荐信息的算法”。之前就说过,Google搞出了PageRank这样一个排序算法,来分辨哪些网页的价值更大,这本质上就是一个广义的“推荐算法”,因为Google会把他们认为价值更大的的网页排在搜索结果的前列,推荐给用户。

而目前最流行的“协同过滤算法”其实早在90年代就诞生了,Amazon很早就在使用协同过滤算法,而当下使用基于“内容”的协同过滤算法大概是在2003年开始被Amazon使用的(当然,Amazon当时主要是基于“商品”做协同过滤,对推荐系统发展有兴趣的朋友,推荐阅读《推荐系统实践》一书,作者项亮)。

要说推荐算法-信息流时代是怎么崛起的,还要从在2006年说起。

Facebook发布了全新功能NewsFeed,而最初的NewsFeed,就配备了“推荐算法”,当时的算法叫EdgeRank,最初的算法非常糙只是对不同内容类型做一些简单的加权,但是随着时间的推移,Facebook开始不断优化他们的算法,比如采用更复杂的计算维度和加入机器学习,当时Facebook还抄袭社交网站Friendfeed的点赞设计(赞的设计对推荐算法来说是个划时代的设计,有了赞机器学习的算法才有判断推荐满意度的重要参照物。当然最后Facebook09年收购了Friendfeed,抹除了各种意义上的威胁)。

被推荐算法加持的Newsfeed变得越来越好用,用户不再按照单纯的订阅维度来消费信息。于是该功能上线不到两年时间,Facebook就从日活跃用户不到Myspace的一半迅速在活跃用户的数据上迅速超越了Myspace。这是推荐算法第一次在信息分发中展现其惊人的威力。

于是最先进的互联网信息公司都开始配置推荐算法这个武器。不管是YouTube、Twitter甚至做长视频的Netflix。推荐算法一下子成为了当时互联网产品的必备功能。此时的推荐算法-信息流,还只是一个附属于产品的一个功能,完全基于围绕推荐算法-信息流设计的产品这个时候还没降临。

说起推荐算法和信息流,其实feed这个词被翻译成流是一件非常奇怪的事情。虽然用“流”来形容feed确实挺形象的。不过我查阅材料的时候发现,我的朋友潘乱的公众号乱翻书上曾经记录过一件事情,就是早在扎克伯格创立Facebook之前,他和他的同学德安杰洛(Facebook CTO,Qura创始人)一起写了一款使用推荐算法的音乐播放器,然后为这个个性化推荐算法申请了一个专利,当时在专利申请文件中,他们用了Stream来称呼这个算法输出的推荐结果串。而Stream这个词直译就是“流”

有了推荐算法,信息流革新商业模式,甚至成为能够独立存在的产品形态,建立一个全新的时代只差一步之遥。这一步的启发来自Pinterest。Pinterest诞生在2010年,它是一款图片分享工具,诞生的时代移动互联网即将进入全面爆发,尽管当时Pinterest还是一款网页产品。

Pinterest和他的前辈flickr最大的不同有两点:

  1. flickr的图片主要来自用户上传,然后让用户分享、转发和评论;而Pinterest的图片除了来自用上传,他们还会使用蜘蛛爬虫爬取网络上的图片,然后通过标签分类把图片进行识别过滤分类(Pinterest最大的爬取源就是flickr);
  2. Pinterest呈现结果的页面是采用了一个向下滚动无限加载的不用翻页的交互设计,在中国国内人们管这个设计叫“瀑布流”(infinite scrolling)。
互联网信息分发简明史

Pinterest的瀑布流设计成为了后来的图片网站的标配

前者让Pinterest拥有远多于flickr的图片储备,而后者为之后的移动时代信息流产品的做了一个划时代的设计范本

我曾经在2018年写的《Gamification浅析》一文当中详细阐述过推荐算法+无限瀑布流设计如何启动人类的“斯金纳强化”,使人进入“心流”状态。而这个设计在加上一点点创新,就开启了推荐算法-信息流模式能够对抗搜索引擎的商业模式。

互联网信息分发简明史

可以由推荐算法+无限瀑布流设计激发的心流

搜索引擎的理论广告位的理论上限虽然非常高,但是搜索引擎有个致命缺陷,那就是一个人使用搜索引擎的次数其实非常有限。这个限制是由“人能清楚的知道多少自己不知道什么”决定的。这句话听起来有点绕,展开说就是,人必须知道自己现在要找什么,然后要找的这个信息,还得是自己不知道的,人才会有机会去使用搜索引擎。换句话说,搜索引擎的使用场景就像词典(Google在二级市场上的伞形公司壳公司也确实叫Alphabet,意思就是词典),人查阅词典和百科全书的机会和无所事事的时间比,实在是太微不足道了。

采用完全主动出击思路的推荐算法型产品,是专门设计给用户不知道自己应该找什么的场景使用的。也就是说,这个解决方案在分发长尾信息的效率不上,要比精确的搜索引擎高出好几个数量级。

而采用这个设计最早最出名的互联网信息产品,应该就是今日头条了。这可能也是中国互联网产品在这整个互联网信息分发史当中,第一次有在产品理念的先进性上领先美国的案例。这款产品的诞生可能也是中美互联网copy to China到copy from China的分水岭,是中国互联网综合创新力的一种具象展现

互联网信息分发简明史

在推荐算法时代,中国摆脱Copycat的位置

这里我们还要明确一件事情,很多人会把推荐算法当做推荐算法-信息流类产品的唯一能力。这种认知实际上是有很大问题的。

就像我前文说的,互联网信息分发的演化过程,实际上有些类似生物的演化过程,随着互联网用户的增长和网络上信息总量的增加,我们不断需要更高效更先进的信息分发解决方案但这个解决方案并不是覆盖式的,新的技术应用出来,直接淘汰过去的技术。这个过程是叠加式的,新的技术应用出来,结合更新的商业模式创新,叠加成一个更先进的信息分发解决方案,这个方案会包含过去发明出来的有效解法,整体是个更完整复杂的体系

实际上像今日头条这样的产品,就是一个聚集了分类目录、搜索、关注订阅、推荐算法的综合型信息分发产品。

我相信,在未来会出现更新更高效的互联网信息分发产品,也会遵循这个“进化规律”,不论这个产品是在5G还是6G时代下的,是移动App还是个VR/MR应用。

互联网这个比特镜像的世界,一定会驱动我们人类不断向前进


写在最后的话:

会写这篇文章其实还是前几天去参加了今日头条的生机大会。头条的新任CEO朱文佳在开场主题演讲的时候,用了一张图描绘了一下今日头条的业务边界扩展的逻辑。

互联网信息分发简明史

今日头条业务边界的“一横一竖”

当时我就想起来,我在2017年的时候写《抖音的野望,快手的危机》的时候,我曾经也画过一张描绘从社交到媒体的不同内容产品形态变化的图。

互联网信息分发简明史

这张图基本反映了我对整个基于关系链的内容形态变化的理解。恰好这个轴与朱文佳所画的横轴有些近似,所以我就想写一篇讲讲竖轴是怎么随着时代发展过来的科普文。

不过我写到一半的时候发现这东西越来越长,细节颇多,于是决定省却一些细节,希望能把这个事情讲个基本明白就算OK,希望读完的各位还能满意。

而关于属于未来的互联网信息分发会怎么进化,这类比较大的话题,欢迎大家私信我留言探讨。

以上,感谢。

信息分发

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000