• 精选
  • 会员

三角推断法

2020年6月29日  来源:祖先的故事 作者:理查德·道金斯 提供人:huangtang13......

语言学家经常希望能够逆着历史追溯各种语言的演变。如果有现存的书面记录,那么这是一件相当容易的任务。语言历史学家可以用我们重建历史的第二种方法,追踪再生遗存的变化。借助连续的文学传承,从莎士比亚到乔叟再到《贝奥武甫》[30],现代英语可以回溯到中古英语(Middle English)再到盎格鲁–萨克逊语(Anglo-Saxon)。很显然语言本身的历史远远早于书写的发明,更何况很多语言根本没有发展出文字。对于已经消亡的语言来说,语言学家研究它们的早期历史所借助的方法正是我所称的“三角推断法”的一个变体。他们比较现代语言的差异并对其分组,把它们分层级地归入不同的语系和语族。罗曼语族(Romance)、日耳曼语族(Germanic)、斯拉夫语族(Slavic)、凯尔特语族(Celtic)和其他一些欧洲语族、印度语族一起构成印欧语系(Indo-European)。语言学家相信,真实存在过一种原始印欧语(Proto-Indo-European),在大约6 000年前,它曾是某个部族的口语。他们甚至基于其现代后裔的共通之处进行逆推,试图复现这门语言的诸多细节。同样的方法还被用于回溯世界其他地方跟印欧语系同级别的各语系,比如阿尔泰语系(Altaic)、达罗毗荼语系(Dravidian)、乌拉尔–尤卡吉尔语系(Uralic-Yukaghir)等。有些语言学家持有一种乐观却颇有争议的观点,他们相信可以继续回溯,将所有这些主流语系纳入一个包容力更强的超语系。他们坚信通过这种方法可以重建出一种原始语言以及它的各个要素,他们称之为“诺斯特拉语”(Nostratic),认为它曾作为口语存在于1.5万年前到1.2万年前。

许多语言学家一方面乐于认可原始印欧语和同级别的其他古语言的存在,另一方面却怀疑是否真的可能重现像诺斯特拉语这样古老的语言。他们的专业质疑也加强了我本人作为业余者的怀疑。不过毫无疑问的是,类似的三角推断法可以用于研究进化的历史,以各种技术手段对现代生物进行比较,穿越亿万年的光阴。即便没有化石,通过对现代动物进行细致的比较,我们依然可以清楚可靠地重建出它们的祖先。语言学家可以依据现代语言复现已经消亡的语言,凭借三角推断法穿透历史,揭秘原始印欧语,我们也可以做同样的事,只不过将比较对象换成现代生物的外部特征、蛋白质或DNA序列。当世上的图书馆积累的物种精确DNA长序列越来越多,我们进行三角推断的可靠性也会随之提高,特别是这些DNA序列有着大面积的重叠,这对我们尤为有利。

请允许我解释一下我所说的“大面积的重叠”是什么意思。哪怕物种的关系极其疏远,比如人类和细菌,也依然能明确地找到大段相似的DNA。至于关系非常近的物种,比如人类和黑猩猩,相同DNA序列就更多了。如果你挑选分子进行物种间比较的时候足够精明,你会发现物种间共享DNA的比例随着血缘接近的程度而稳定连续上升,从不间断。远到人类和细菌,近到两种不同的蛙类,用于比较的分子需要覆盖整个比较的谱系。而两种语言之间的相似性就比较难判断了,除非这两种语言本身就很接近,比如德语和荷兰语。有些语言学家满怀希望地推论出诺斯特拉语的存在,可他们的推理链条过于细弱,其中所谓的联系正是另一些语言学家质疑的对象。拿人类和细菌去做三角推断得到的会不会是DNA版本的诺斯特拉语?人类和细菌的确有些共同的基因,自它们的“诺斯特拉”,即二者的共同祖先存在以来就几乎不曾改变。而且,既然遗传密码在所有物种之间几乎完全一样,那么生物共同的祖先所采用的必然也是相同的密码。也许你可以这么说,任何一对哺乳动物之间的相似性就好比德语和荷兰语之间的关系。而人类和黑猩猩的DNA是如此相似,就好比同样是英语,只是口音略微有些差异。而英语和日语之间或西班牙语和巴斯克语之间的差异太大,没有哪对活着的生物可以用来类比,就连人类和细菌都不行。人类和细菌的DNA序列相似到什么程度?就好比整段话每个词都一样。

我一直在讲DNA可以用于三角推断。理论上,用粗略的形态学特征也可以进行同样的推断,但缺少了分子层面的信息,推断出来的远祖就会像诺斯特拉语一样难以捉摸。跟用DNA推断一样,依据形态特征,我们也可以假设后代共有的那些特点很可能(或者稍微倾向于可能而非不可能)遗传自共同的祖先。比如,所有脊椎动物都有一根脊柱,我们假定它们都是从同一个远祖那里遗传了脊柱(严格来讲是遗传了那些负责形成脊柱的基因)。从化石记录来看,这位拥有脊柱的远祖大概生活在5亿多年以前。本书正是用这种形态学三角推断来帮助大家想象共祖的身体形态。尽管我情愿更多倚重DNA证据直接推断共祖的形态,但目前我们的能力尚不足以让我们根据一个基因的变化推断它对生物体形态的影响,因此也不足以完成这个任务。

纳入许多物种进行三角推断将会更加有效,但这要求我们采用许多细致的方法,而应用这些方法的前提是建立准确的系谱图。我们将在《长臂猿的故事》中介绍这些方法。三角推断本身还有助于建立另外一种技术,用来计算任何一次进化分支产生的年代,即“分子钟”(Molecular Clock)技术。简单来说,这种方法是对现存物种的分子序列差异性进行计量。血缘相近的物种有相对晚近的共同祖先,其序列差异就小于关系疏远的物种之间的差异。因此,两个物种共同祖先的年龄就跟二者的分子差异成正比,至少我们是这样希望的。借助几个年代已知的关键分支点,以及这个时期碰巧存留的化石,我们就可以对分子钟的时间尺度进行标定,把它转换成真实的年份。实践上并没有这么简单,《天鹅绒虫的故事》后记里讲的主要就是在这个过程中遇到的各种复杂情况、诸多困难和相关的争论。

乔叟在他著作的总序里逐个介绍了朝圣之旅的所有出场人物,可我的出场角色表实在太长了,没法逐一介绍。不管怎么说,这本书本身就是对40个会合点所做的一连串长长的介绍。不过,一个初步的介绍仍然是必要的,只是我采用的方式并不是乔叟式的。他的出场角色表里是一个个的人,我的则是一串类别。这里有必要介绍一下动植物的分类法。比如在第11会合点,会有大约2 000种啮齿目动物(rodent)和90种穴兔(rabbit)、野兔(hare)、鼠兔(pika)加入我们的朝圣,它们统称为啮齿动物(Glires)。我们对这些物种以层级的方式进行分组,并为每个组赋予独特的名字。比如,形态跟家鼠相似的啮齿目动物被归入鼠科(Muridae),而像松鼠的啮齿目被归入松鼠科(Sciuridae)。这种分组的每个层级都有自己的名字,鼠科和松鼠科都是科(family),而啮齿目(Rodentia)是它们所属的目(order)的名字。啮齿目再加上各种兔类就构成了一个统称为啮齿动物的总目(superorder)。这些分类组别共同构成一个层级系统,而科和目位于层级中间的位置。各个物种接近层级的底部,而从种往上有属、科、目、纲、门等,此外还有“亚”和“总”这样的前缀来填补各级中间的位置。

就像我们将在不同的故事中看到的那样,物种处于一个特殊的地位。每个物种都有一个独一无二的拉丁学名,由两个词组成。第一个词是首字母大写的属名,紧跟着是小写的种名,两个词都用斜体字。豹子、狮子和老虎都是豹属(Panthera)的物种,其学名分别为Panthera pardusPanthera leoPanthera tigris。豹属隶属于猫科(Felidae),后者又依次属于食肉目(Carnivora)、哺乳纲(Mammalia)、脊椎动物亚门(Vertebrata)和脊索动物门(Chordata)。关于分类学原理,我在这里不再赘述,而会在本书随后需要的时候详述。

核心关键词不超过3个

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000