2017年是中国人工智能元年,一方面,数据、算法和算力的螺旋式发展使得人工智能发展的条件逐渐成熟;另一方面,人工智能的某些早期实践使得人们认识到人工智能的巨大潜力和无限想象空间,未来有可能给行业发展带来颠覆性的影响。
2017年5月, 在中国乌镇围棋峰会上,AlphaGo以3:0战胜世界排名第一的中国棋手柯洁,引起了全世界的广泛关注;如果说2017年是中国人工智能元年,那么2018年则是中国人工智能市场投资和应用加速成长,迅速落地的一年。2018年以来,互联网和产业界巨头加大了对人工智能市场的投入,人工智能产品和服务层出不穷,行业解决方案和应用场景快速落地。
人工智能的发展需要巨大的算力支撑,算力也是推动人工智能应用和系统发展的核心驱动力。目前,人工智能的投资也以硬件投资为主,给基础架构硬件市场带来了巨大的市场机遇。
根据IDC对中国人工智能市场的研究数据,2018年,中国人工智能市场投资规模约25亿美元,其中70%以上为以算力为核心的基础架构硬件市场投资;IDC预测,到2022年,中国的人工智能市场投资规模将超过百亿美元,未来五年的复合增长率超过59%,将形成一个新的千亿人民币规模的产业生态,其中人工智能基础架构硬件市场规模将超过千亿人民币。
▲中国人工智能市场规模及预测,2017-2022
接下来,我们将从客户接受度、需求侧、供给侧和人工智能的实践四个方面来分析中国人工智能市场的发展状况。
1、接受度普遍提高:人工智能将进入快速应用和部署期
从2017年开始,IDC针对亚太地区进行了企业人工智能接受度和应用成熟度调研,2018年的调研结果显示,中国人工智能的市场接受度从2017年的10%迅速提升到超过20%;同时,在未来两年中计划使用人工智能的企业比例也从27%提升到60%。人工智能市场有望在未来两年提速,进入实际应用和部署的快速增长期。
▲IDC中国人工智能接受度市场调研
2、需求侧:呈现场景化和行业化特征
经过几年的观念普及和市场教育,2018年中国人工智能市场已经进入广泛的应用尝试和行业解决方案探索期,在人脸识别、语音识别、图片识别、自然语言处理等某些成熟的应用场景下,一些解决方案已经开始在互联网、政府、交通、金融和制造等行业得到了广泛的应用,给人工智能解决方案的提供者和最终客户带来了价值。客户也开始从应用实践中对人工智能有了更清晰的认识,对人工智能的应用提出更清晰、更准确的要求。
▲IDC亚太人工智能接受度市场调研
IDC2018年的调研结果显示,客户采用人工智能系统最重要 的 三 个 目 标 是 :提 高 生 产力,提升业务/运营/IT等的自动化水平和发现新价值。客户已经普遍认识到人工智能的巨大潜力,将其视为数字化转型和业务创新的利器,希望能够通过使用人工智能技术实现提高生产力、提高业务运营能力并指导决策和业务创新的目标。
3、供给侧:算力推动数据处理和算法演进,应用成熟度提升
算力、算法和数据是人工智能的三个基本要素,在人工智能的实际应用中缺一不可,在人工智能发展的进程中相辅相成,在不同的发展阶段各自发挥着核心作用。
算法:算法是人工智能早期研究和发展的热点,从人工智能概念提出开始,算法一直在不断地发展和演进。从供给的角度来看,学术界是人工智能理论和算法的开创者,在人工智能理论和算法的早期发展过程中起到了核心的作用,从决策树到神经网络,从机器学习到深度学习,推动算法不断演进和进步;2010年之后,TensorFlow和Ca?e框架相继诞生,互联网巨头开始更多的投入对算法和算法框架的研究,并以互联网的方式和开源的精神推动了算法的发展,促进了算法与应用的结合。
数据:进入新世纪之后,互联网的发展和普及使人类进入数字时代,数据爆炸性增长,各种类型的数据、各种格式的数据、各行各业的数据都以前所未有的速度产生并存储下来,为人工智能的发展提供了丰沃的土壤。
在中国,数据主要可以划分为两类:行业数据和互联网数据。行业数据主要掌握在政府和政府主导的金融、电信、制造、医疗、能源等行业巨头和政府管理机构手中,互联网数据主要掌握在BAT等头部互联网公司手中。数据量不再是一个问题,唯一需要考虑的是如何处理和使用数据?使之更适合为人工智能系统所用;如何打破数据的壁垒,将更多的数据开放出来,并保证数据的安全和隐私保护。
中国在2017年6月1日发布并实施了《中华人民共和国网络安全法》,该法第三十七条中明确规定:“关键信息基础设施的运营者在中华人民共和国境内运营中收集和产生的个人信息和重要数据应当在境内存储。网络安全法等法律法规为数据的存储、管理和应用提供了法律依据。
算力:在人工智能的三个基本要素中,算力的提升直接提高了数据的数量和质量,提高了算法的效率和演进节奏,成为推动人工智能系统整体发展并快速应用的核心要素和主要驱动力。
人工智能计算具有并行计算的特征,按照工作负载的特点主要分为训练(training)和推理(inference)。传统的通用计算无法满足海量数据并行计算的要求,于是以CPU+GPU为代表的加速计算应运而生并得到了快速的发展,成为当前主流的人工智能算力平台,尤其是在面对训练类工作负载时具有很高的效率和明显的生态优势;推理类工作负载具有实时性要求高、场景化特征强、追求低功耗等特征,在不同的应用场景下呈现明显的差异化,除了GPU加速计算解决方案以外还出现了众多新的个性化算力解决方案,比如:基于FPGAASICARMDSP等架构的定制芯片和解决方案,其计算平台呈现明显的多样化特征。
算力的提升是个系统工程,不仅涉及到芯片、内存、硬盘、网络等所有硬件组件,同时也要根据数据类型和应用的实际情况对计算架构、对资源的管理和分配进行优化。目前提升算力的手段也主要是两种,一种是与应用无关的,通过对架构和核心组件的创新,提升整体系统的算力水平;另一种是与应用强相关的,通过定制芯片、硬件和系统架构,为某个或某类应用场景和工作负载提供算力。
国际上来看,谷歌发布第二代TPU,Intel通过收购布局人工智能市场,Nvidia不断推出新的GPU产品和软件,微软和AWS率先在云端推出AIaaS服务,美国科技企业以核心技术和创新精神引领着人工智能市场的发展和算力的提升。目前,中国厂商仍然缺乏算力的核心技术,算力的供给主要还是由服务器厂商将国际厂商的解决方案产品化来实现。但我们也看到,领先的厂商已经开始在芯片、算法框架、应用部署和管理工具等方面加大研发和投入,丰富和加强自己的算力平台,并且已经取得了一定的成果。
伴随算力的提升,尤其是GPU等技术应用于人工智能之后,极大提升了算法的效率和演进的节奏,使产业界看到了人工智能实际应用的可能,推动算法的研究走出实验室,更多的与产业和行业相结合,衍生出丰富的与行业应用和场景相关的算法分支,从而形成了算力、算法和数据的良性互动,促进了人工智能生态的快速发展和繁荣。
在人工智能的应用层面,中国与世界处在同一个起点,在某些领域甚至已经走在了前面。互联网是人工智能技术发展和应用实践的先行者,BAT根据自身优势推出自己的智能驾驶、城市大脑、智慧医疗等人工智能战略和AIaaS云服务;与此同时,人工智能创新企业不断涌现,在人脸识别、图像识别、自然语言处理、自动驾驶和人工智能芯片等细分领域都取得了突破性进展,推动人工智能的应用场景和行业应用快速发展和落地,科大讯飞、寒武纪、商汤、旷世、地平线、深鉴科技等领先企业也受到了资本的青睐,迅速成长为新的独角兽企业。人工智能成为互联网、产业界和投资领域共同关注和投资的核心热点。
4、以算力为核心:人工智能实践从提升算力开始
2018年,中国人工智能市场投资规模约25亿美元,其中约66%的投资是算力的投资;
IDC预测,到2022年,中国市场的人工智能算力投资将超过50亿美元,占人工智能整体投资市场规模的近50%。
计算平台既是算法和数据的载体,也是人工智能系统的承载平台,算力直接决定了人工智能系统的效率和人工智能应用实践的成败,无论是训练还是推理,人工智能的投资和实践往往都是从搭建计算平台开始的。
▲中国人工智能基础架构市场规模及预测,2017-2022