• 精选
  • 会员

个性化推荐系统,必须关注的五大研究热点

2018年12月2日  来源:微软亚洲研究院 作者: 提供人:tipattab0......

随着信息技术和互联网行业的发展,信息过载成了人们处理信息的挑战。对于用户而言,如何在以指数增长的资源中快速、准确地定位到自己需要的内容是一个非常重要且极具挑战的事情。对于商家而言,如何把恰当的物品及时呈现给用户,从而促进交易量和经济增长,也是一件颇具难度的事情。推荐系统的诞生极大地缓解了这个困难。

推荐系统是一种信息过滤系统,能根据用户的档案或者历史行为记录,学习出用户的兴趣爱好,预测出用户对给定物品的评分或偏好。它改变了商家与用户的沟通方式,加强了和用户之间的交互性。

据报道,推荐系统给亚马逊带来了35%的销售收入,给Netflix带来了高达75%的消费,并且Youtube主页上60%的浏览来自推荐服务。

因此,如何搭建有效的推荐系统意义深远。我们将从深度学习的应用、知识图谱的应用、强化学习的应用、用户画像和可解释推荐等几个方面,一起看看推荐系统的未来。

个性化推荐

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000