• 精选
  • 会员

浅谈人工智能:机器学习——学习的极限和“停机问题”

2018年11月17日  来源:视觉求索 作者:朱松纯 提供人:hahahao010999@1......

第十节 机器学习:学习的极限和“停机问题”

前面谈的五个领域,属于各个层面上的“问题领域”,叫Domains。我们努力把这些问题放在一个框架中来思考,寻求一个统一的表达与算法。而最后要介绍的机器学习,是研究解决“方法领域”(Methods),研究如何去拟合、获取上面的那些知识。打个比方,那五个领域就像是五种钉子,机器学习是研究锤子,希望去把那些钉子锤进去。深度学习就像一把比较好用的锤子。当然,五大领域里面的人也发明了很多锤子。只不过最近这几年深度学习这把锤子比较流行。

网上关于机器学习的讨论很多,我这里就提出一个基本问题,与大家探讨:学习的极限与“停机问题”。

大家都知道,计算机科学里面有一个著名的图灵停机Halting问题,就是判断图灵机在计算过程中是否会停下了。我提出一个学习的停机问题:学习应该是一个连续交流与通讯的过程,这个交流过程是基于我们的认知构架的。那么,在什么条件下,学习过程会终止呢?当学习过程终止了,系统也就达到了极限。比如,有的人早早就决定不学习了。

首先,到底什么是学习?

当前大家做的机器学习,其实是一个很狭义的定义,不代表整个的学习过程。见下图。它就包含三步:

(1)你定义一个损失函数loss function 记作u,代表一个小任务,比如人脸识别,对了就奖励1,错了就是-1。

(2)你选择一个模型,比如一个10-层的神经网络,它带有几亿个参数theta,需要通过数据来拟合。

(3)你拿到大量数据,这里假设有人给你准备了标注的数据,然后就开始拟合参数了。

这个过程没有因果,没有机器人行动,是纯粹的、被动的统计学习。目前那些做视觉识别和语音识别都是这一类。

浅谈人工智能:现状、任务、构架与统一 | 朱松纯

其实真正的学习是一个交互的过程。就像孔子与学生的对话,我们教学生也是这样一个过程。 学生可以问老师,老师问学生,共同思考,是一种平等交流,而不是通过大量题海、填鸭式的训练。坦白说,我虽然是教授,现在就常常从我的博士生那里学到新知识。

这个学习过程是建立在认知构架之上的(第六节讲过的构架)。我把这种广义的学习称作通讯学习Communicative Learning,见下图。

浅谈人工智能:现状、任务、构架与统一 | 朱松纯

这个图里面是两个人A与B的交流,一个是老师,一个是学生,完全是对等的结构,体现了教与学是一个平等的互动过程。每个椭圆代表一个脑袋mind,它包含了三大块:知识theta、决策函数pi、价值函数mu。最底下的那个椭圆代表物理世界,也就是“上帝”脑袋里面知道的东西。上面中间的那个椭圆代表双方达成的共识。

这个通讯学习的构架里面,就包含了大量的学习模式,包括以下七种学习模式(每种学习模式其实对应与图中的某个或者几个箭头),这里面还有很多模式可以开发出来。

(1)被动统计学习passive statistical learning:上面刚刚谈到的、当前最流行的学习模式,用大数据拟合模型。

(2)主动学习active learning:学生可以问老师主动要数据,这个在机器学习里面也流行过。

(3)算法教学algorithmic teaching:老师主动跟踪学生的进展和能力,然后,设计例子来帮你学。这是成本比较高的、理想的优秀教师的教学方式。

(4) 演示学习learning from demonstration:这是机器人学科里面常用的,就是手把手叫机器人做动作。一个变种是模仿学习immitation learning。

(5)感知因果学习perceptual causality:这是我发明的一种,就是通过观察别人行为的因果,而不需要去做实验验证,学习出来的因果模型,这在人类认知中十分普遍。

(6)因果学习causal learning:通过动手实验, 控制其它变量,而得到更可靠的因果模型, 科学实验往往属于这一类。

(7)增强学习reinforcement learning:就是去学习决策函数与价值函数的一种方法。

我在第一节谈到过,深度学习只是这个广义学习构架里面很小的一部分,而学习又是人工智能里面一个领域。所以,把深度学习等同于人工智能,真的是坐井观天、以管窥豹。

其次,学习的极限是什么?停机条件是什么?

对于被动的统计学习,文献中有很多关于样本数量或者错误率的上限。这里我所说的学习的极限就远远超越了那些定义。我是指这个广义的学习过程能否收敛?收敛到哪?学习的停机问题,就是这个学习过程怎么终止的问题。就这些问题,我和吴英年正在写一个综述文章。

我们学习、谈话的过程,其实就是某种信息在这些椭圆之间流动的过程。那么影响这个流动的因素就很多,我列举几条如下。

(1)教与学的动机:老师要去交学生一个知识、决策、价值,首先他必须确认自己知道、而学生不知道这个事。同理,学生去问老师,他也必须意识到自己不知道,而这个老师知道。那么,一个关键是,双方对自己和对方有一个准确的估计。

(2)教与学的方法:如果老师准确知道学生的进度,就可以准确地提供新知识,而非重复。这在algorithmiclearning 和 perceptual causality里面很明显。

(3)智商问题:如何去测量一个机器的智商?很多动物,有些概念你怎么教都教不会。

(4)价值函数:如果你对某些知识不感兴趣,那肯定不想学。价值观相左的人,那根本都无法交流,更别谈相互倾听、学习了。比如微信群里面有的人就待不了,退群了,因为他跟你不一样,收敛不到一起去,最后同一个群的人收敛到一起去了,互相增强。这在某种程度上造成了社会的分裂。

这个学习条件的设定条件不同,人们学习肯定不会收敛到同一个地方。中国14亿人,有14亿个不同的脑模型,这14亿人中间,局部又有一些共识,也就是共享的模型。

我说的停机问题,就是这个动态过程中所达成的各种平衡态。

人工智能 / 机器学习

如涉及版权,请著作权人与本网站联系,删除或支付费用事宜。

0000